Advertisement

Convoluteurs continus et topologie stricte

  • Jacques Delaporte
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1359)

Résumé

Soit G un groupe localement compact. On étudie une sous-algèbre de CVp(G) qui pour G abélien et p=2 coïncide avec les convoluteurs dont la transformée de Fourier est continue.

Keywords

Localement Compact Donne Lieu Nous Utiliserons Quelques Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    ANKER, J.-PH.: Applications de la p-induction en analyse harmonique. Comment. Math. Helv. 58 (1983) 622–645.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    BUCK, R.C.: Bounded continuous functions on a locally compact space. Michigan Math. J. 5 (1958) 95–104.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    COWLING, M.: An application of Littlewood-Paley theory in harmonic analysis. Math. Ann. 241 (1979) 83–96.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    DERIGHETTI, A.: A propos des convoluteurs d'un groupe quotient. Bull. Sc. Math., 2 e série, 107 (1983) 3–23.MathSciNetzbMATHGoogle Scholar
  5. [5]
    DERIGHETTI, A.: Quelques observations concernant les ensembles de Ditkin d'un groupe localement compact. Mh. Math. 101 (1986) 95–113.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    FENDLER, G.: An L p-version of a theorem of D.A. Raikov. Ann. Inst. Fourier (1)35 (1985) 125–135.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    GRANIRER, E.E.: Density theorems for some linear subspaces and some C*-subalgebras of V N (G). Symposia Mathematica XXII(1977) 61–70.MathSciNetGoogle Scholar
  8. [8]
    GRANIRER, E.E.: On some spaces of linear functionals on the algebras A p(G) for locally compact groups. Colloq. Math. LII (1987) 119–132.MathSciNetzbMATHGoogle Scholar
  9. [9]
    HERZ, C.S.: The spectral theory of bounded functions. Trans. Amer. Math. Soc. 94 (1960) 181–232.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    HERZ, C.S.: Harmonic synthesis for subgroups. Ann. Inst. Fourier (3)23 (1973) 91–123.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    HERZ, C.S.: Une généralisation de la notion de transformée de Fourier-Stieltjes. Ann. Inst. Fourier (3)24 (1974) 145–157.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    HERZ, C.S.: Asymmetry of norms of convolution operators II: nilpotent Lie groups. Symposia Mathematica XXII (1977) 223–230.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jacques Delaporte
    • 1
  1. 1.Institut de mathématiques, Faculté des SciencesUniversité de LausanneLausanne-Dorigny

Personalised recommendations