Advertisement

Le noyau de la chaleur sur les espaces symetriques U(p,q)/U(p)×U(q)

  • Jean-Philippe Anker
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1359)

Keywords

Symmetric Space Invariant Differential Operator Nous Allons Complex Grassmann Manifold Prolongeant Analytiquement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    J.-Ph. Anker: La forme exacte de l'estimation fondamentale de Harish-Chandra, C. R. Acad. Sci. Paris 305-série I (1987), 371–374.MathSciNetzbMATHGoogle Scholar
  2. [2]
    J.-Ph. Anker & N. Lohoué: Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), 1303–1354.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    K. Aomoto: Sur les transformations d'horisphère et les intégrales qui s'y rattachent, J. Fac. Sci. Univ. Tokyo 14 (1967), 1–23.MathSciNetzbMATHGoogle Scholar
  4. [4]
    R. Azencott & al.: Géodésiques et diffusions en temps petit, Astérisque 84–85, Soc. Math. France (1981).Google Scholar
  5. [5]
    R. J. Beerends: On the Abel transform and its inversion, Thèse, Univ. Leiden (1986).Google Scholar
  6. [6]
    F. A. Berezin & F. I. Karpelevič: "Fonctions sphériques zonales et opérateurs de Laplace sur certains espaces symétriques" (en russe), Dokl. Akad. Nauk. USSR 118 (1958), 9–12.Google Scholar
  7. [7]
    I. Chavel: Eigenvalues in Riemannian Geometry, Academic Press (1984).Google Scholar
  8. [8]
    J. Cheeger, M. Gromov & M. E. Taylor: Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Diff. Geometry 17 (1982), 15–53.MathSciNetzbMATHGoogle Scholar
  9. [9]
    S. Cheng, P. Li & S.-T. Yau: On the upper estimate of the heat kernel on a complete Riemannian manifold, Amer. J. Math. 103 (1981), 1021–1063.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Debiard & B. Gaveau: Analysis on root systems, Prépublication (1986).Google Scholar
  11. [11]
    A. Debiard & B. Gaveau: Noyaux de la chaleur pour certaines équations hypergéométriques et application aux espaces symétriques de rang 1, C. R. Acad. Sci. Paris 303-Série I (1986), 849–852.MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Debiard & B. Gaveau: Noyaux de la chaleur, systèmes de racines, et espaces symétriques de type B2, C. R. Acad. Sci. Paris 303-série I (1986), 951–953.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Debiard & B. Gaveau: Noyaux de la chaleur de certaines équations aux dérivées partielles à singularité régulière et applications à certains espaces symétriques, C. R. Acad. Sci. Paris 304-série I (1987), 131–133.MathSciNetzbMATHGoogle Scholar
  14. [14]
    A. Debiard, B. Gaveau & E. Mazet: Théorèmes de Comparaison en Géométrie Riemannienne, Publ. R. I. M. S. Kyoto Univ. 12 (1976), 391–425.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    L. D. Èskin: The Heat Equation and the Weierstrass Transform on Certain Riemannian Spaces, Amer. Math. Soc. Transl. 75 (1968), 239–255.zbMATHCrossRefGoogle Scholar
  16. [16]
    M. Flensted-Jensen: Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106–146.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    R. Gangolli: Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces, Acta Math. 121 (1968), 151–192.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    S. G. Gindikin & F. I. Karpelevič: Plancherel measure for Riemannian symmetric spaces of nonpositive curvature, Soviet Math. Dokl. 3 (1962), 962–965.zbMATHGoogle Scholar
  19. [19]
    R. Godement: Introduction aux travaux de A. Selberg, Séminaire Bourbaki 144 (1957).Google Scholar
  20. [20]
    A. Hba: Analyse harmonique sur SL (3, IH), C. R. Acad. Sci. Paris 305-série I (1987), 77–80.MathSciNetzbMATHGoogle Scholar
  21. [21]
    S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978).Google Scholar
  22. [22]
    S. Helgason: Groups and Geometric Analysis, Academic Press (1984).Google Scholar
  23. [23]
    B. Hoogenboom: Spherical functions and invariant differential operators on complex Grassmann manifolds, Ark. Mat. 20 (1982), 69–85.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    L. Hörmander: An Introduction to Complex Analysis in Several Variables, North-Holland (1973).Google Scholar
  25. [25]
    T. H. Koornwinder: A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145–159.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    T. H. Koornwinder: Jacobi Functions and Analysis on Noncompact Semisimple Groups, dans "Special Functions: Group Theoretical Aspects and Applications", R. A. Askey & al. (eds.), Reidel (1984), 1–85.Google Scholar
  27. [27]
    P. Li & S.-T. Yau: On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153–201.MathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Lohoué & Th. Rychener: Some Function Spaces on Symmetric Spaces Related to Convolution Operators, Prépublication Orsay (1978).Google Scholar
  29. [29]
    N. Lohoué & Th. Rychener: Die Resolvente von Δ auf symmetrischen Räumen vom nichtkompakten Typ, Comment. Math. Helv. 57 (1982), 445–468.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    N. Lohoué & Zhu Fu Liu: Estimation faible de certaines fonctions maximales, C. R. Acad. Sci. Paris 302-série I (1986), 303–305.zbMATHGoogle Scholar
  31. [31]
    H. P. McKean: An Upper Bound to the Spectrum of Δ on a Manifold of Negative Curvature, J. Diff. Geometry 4 (1970), 359–366.MathSciNetzbMATHGoogle Scholar
  32. [32]
    Ch. Meaney: The Inverse Abel Transform for SU(p, q), Ark. Mat. 24 (1986), 131–140.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    F. Rouvière: Sur la transformation d'Abel des groupes de Lie semisimples de rang un, Ann. Scuola Norm. Sup. Pisa 10 (1983), 263–290.MathSciNetzbMATHGoogle Scholar
  34. [34]
    R. J. Stanton & P. A. Tomas: Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251–276.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    R. S. Strichartz: Analysis of the Laplacian on the Complete Riemannian Manifold, J. Funct. Anal. 52 (1983), 48–79.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    R. Takahashi: Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289–433.MathSciNetzbMATHGoogle Scholar
  37. [37]
    R. Takahashi: Fonctions sphériques zonales sur U(n, n+k; IF), dans "Séminaire d'Analyse Harmonique 1976–1977", Faculté des Sciences de Tunis (1977).Google Scholar
  38. [38]
    V. S. Varadarajan: Asymptotic properties of eigenvalues and eigenfunctions of invariant differential operators on symmetric and locally symmetric spaces, dans "Lie Groups Representations III", R. Herb & al. (eds.), Lect. Notes Math. 1077, Springer (1984), 396–436.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jean-Philippe Anker
    • 1
  1. 1.Institute de mathématiquesUniversité de LausanneLausanne-DorignySuisse

Personalised recommendations