Advertisement

Number Theory pp 197-201 | Cite as

A linear relation between theta series of degree and weight 2

  • Rainer Schulze-Pillot
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1380)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    A.N. ANDRIANOV, Degenerations of rings of Hecke operators on spaces of theta series, Proc. of the Steklov Institute 1983, no. 3, 1–18 (russ. Original: no. 157 (1981)).Google Scholar
  2. [EZ]
    M. EICHLER, D. ZAGIER, The Theory of Jacobi Forms, Basel 1985.Google Scholar
  3. [G]
    B. GROSS, Heights and the special values of L-series, Sem. Math. Sup., Presses Univ. Montreal.Google Scholar
  4. [HH1]
    J.S. HSIA and D.C. HUNG, Theta series of ternary and quaternary quadratic forms, Inv. Math. 73 (1983), 151–156.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [HH2]
    J.S. HSIA and D.C. HUNG, Theta series of quaternary quadratic forms over Z and Z[(1 + √p)/2], Acta arith. 45 (1985), 75–91.MathSciNetzbMATHGoogle Scholar
  6. [Ki]
    Y. KITAOKA, Representations of quadratic forms and their application to Selberg's zeta functions, Nagoya Math. J. 63 (1976), 153–162.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Kn]
    M. KNESER, Darstellungsmaße indefiniter quadratischer Formen, Math. Z. 77 (1961), 188–194.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Kr]
    J. KRAMER, On the linear independence of certain theta series Preprint Max-Planck-Institut Bonn MPI-SFB 85/40.Google Scholar
  9. [W]
    A. WEIL, Sur la theorie des formes quadratiques, collected works vol. 2, 471–484, Springer Verlag, Berlin-Heidelberg-New York 1979.Google Scholar
  10. [Y1]
    H. YOSHIDA, Siegel's modular forms and the arithmetic of quadratic forms, Inventiones math. 60 (1980), 193–248.CrossRefzbMATHGoogle Scholar
  11. [Y2]
    H. YOSHIDA, On Siegel modular forms obtained from theta series, J.f.d. reine und angew. Mathematik 352 (1984), 184–219.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Rainer Schulze-Pillot
    • 1
  1. 1.Institut für Mathematik IIFreie Universität BerlinBerlin 33

Personalised recommendations