Classification of two-parameter bifurcations

  • Martin Peters
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1463)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnold, V. I., Wave front evolution and equivariant Morse lemma. Commun. Pure Appl. Math. 29 (1976), 557–582.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bruce, J. W., du Plessis, A. A., and Wall, C. T. C., Determinacy and unipotency. Invent. Math. 88 (1987), 521–554.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Dimca, A., Topics on Real and Complex Singularities. Vieweg, Braunschweig/Wiesbaden: 1987.CrossRefzbMATHGoogle Scholar
  4. [4]
    Gibson, C. G. Singular Points of smooth mappings. Pitman, London / San Francisco / Melbourne: 1979.zbMATHGoogle Scholar
  5. [5]
    Golubitsky, M.; Schaeffer, D. G., A theory for imperfect bifurcation via singularity theory. Commun. Pure Appl. Math. 32 (1979), 21–98.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Golubitsky, M. and Schaeffer, D. G., Singularities and Groups in Bifurcation Theory, Vol. 1, Springer, Berlin / Heidelberg / New York: 1984.Google Scholar
  7. [7]
    Izumiya, S., Generic bifurcations of varieties. Manuscripta math. 46 (1984), 137–164.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Martinet, J., Singularities of Smooth Functions and Maps. Cambridge University Press, Cambridge: 1982.zbMATHGoogle Scholar
  9. [9]
    Melbourne, I., The recognition problem for equivariant singularities. Nonlinearity 1 (1988), 215–240.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Peters, M., Classification of two-parameter bifurcations. PhD thesis, University of Warwick, 1991.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Martin Peters

There are no affiliations available

Personalised recommendations