Advertisement

Classification of symmetric caustics I: symplectic equivalence

  • Staszek Janeczko
  • Mark Roberts
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1463)

Abstract

We generalise the classification theory of Arnold and Zakalyukin for singularities of Lagrange projections to projections that commute with a symplectic action of a compact Lie group. The theory is applied to the classification of infinitesimally stable corank 1 projections with ℤ2 symmetry. However examples show that even in very low dimensions there exist generic projections which are not infinitesimally stable.

Keywords

Tangent Space Trivial Extension Finite Codimension Symplectic Action Finite Determinacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Adams, J.F., Lectures on Lie Groups, Benjamin, New York, 1969.zbMATHGoogle Scholar
  2. [AD]
    Armbruster, D. and Dangelmayr, G., Singularities in phonon focusing, Z. Phys. B52 (1983), 87–94.MathSciNetCrossRefGoogle Scholar
  3. [AGV]
    Arnold, V.I., Gusein-Zade, S.M. and Varchenko, A.N., Singularities of Differentiable Maps, Vol. 1, Birkhauser, Boston, 1985.CrossRefzbMATHGoogle Scholar
  4. [BPW]
    Bruce, J.W., du Plessis, A.A. and Wall, C.T.C., Determinacy and unipotency, Invent. Math. 88, 521–554.Google Scholar
  5. [D]
    Damon, J.N., The unfolding and determinacy theorems for subgroups of A and K, Memoirs A.M.S. 306 (1984).Google Scholar
  6. [E]
    Ericksen, J.L., Some phase transitions in crystals, Arch. Rational Mech. Anal. 73 (1980), 99–124.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [G]
    Gaffney, T., New methods in the classification theory of bifurcation problems, in Multiparameter Bifurcation Theory (eds. M. Golubitsky and J. Guckenheimer), Contemp. Math. 56, Amer. Math. Soc., Providence, R.I., 1986.CrossRefGoogle Scholar
  8. [J]
    Janeczko, S., On G-versal Lagrangian submanifolds, Bull. Polish Acad. Sc. 31 (1983), 183–190.MathSciNetzbMATHGoogle Scholar
  9. [JK1]
    Janeczko, S. and Kowalczyk, A., Equivariant singularities of Lagrangian manifolds and uniaxial ferromagnet, SIAM J. Appl. Math. 47 (1987), 1342–1360.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [JK2]
    Janeczko, S. and Kowalczyk, A., Classification of generic 3-dimensional Lagrangian singularities with (ℤ2)1-symmetries, preprint, (1988).Google Scholar
  11. [JR]
    Janeczko, S. and Roberts, R.M., Classification of symmetric caustics II: caustic equivalence, in preparation.Google Scholar
  12. [Ma]
    Mather, J.N., Stability of C mappings IV: classification of stable germs by ℝ-algebras, Publ. Math. IHES 37 (1970), 223–248.MathSciNetCrossRefGoogle Scholar
  13. [Mo]
    Montaldi, J.A., Bounded caustics in time reversible systems, this volume.Google Scholar
  14. [NHW]
    Northrop, G.A., Hebboul, S.E. and Wolfe, J.P., Lattice dynamics from phonon imaging, Phys. Rev. Lett. 55 (1985), 95–98.CrossRefGoogle Scholar
  15. [N]
    Nye, J.F., The catastrophe optics of liquid drop lenses, Proc. R. Soc. London A403 (1986), 27–50.MathSciNetGoogle Scholar
  16. [P]
    Poenaru, V., Singularités C en présence de symétrie, Lecture Notes in Math. 192, Springer, Berlin, Heidelberg, New York, 1976.CrossRefzbMATHGoogle Scholar
  17. [R1]
    Roberts, R.M., On the genericity of some properties of equivariant map germs, J. London Math. Soc. 32 (1985), 177–192.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [R2]
    Roberts, R.M., Characterisations of finitely determined equivariant map germs, Math. Ann. 275 (1986), 583–597.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [S]
    Slodowy, P., Einige Bemerkungen zur Entfaltung symmetrischer Functionen, Math. Z. 158 (1978), 157–170.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [W]
    Wolfe, J.P., Ballistic heat pulses in crystals, Phys. Today 33 (1980), no.12, 44–50.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Staszek Janeczko
  • Mark Roberts

There are no affiliations available

Personalised recommendations