On the bifurcations of subharmonics in reversible systems

  • J. E. Furter
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1463)


Following Vanderbauwhede’s approach [23], the study of the local bifurcation of subharmonics in reversible systems leads to reduced equations equivariant under the dihedral groups. Depending on the dimension of the space, or on the type of the involution, the bifurcation equations can change significantly. We investigate some unusual properties of those equations. In particular we classify up to topological codimension 1 the degenerate bifurcations when the dimension of the space is odd and the signature of the involution is +1.


Periodic Solution Normal Form Bifurcation Diagram Recognition Problem Dihedral Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.I.Arnol’d. Geometrical Methods in the Theory of Ordinary Differential Equations.Springer.1988.Google Scholar
  2. [2]
    G. Birkhoff. The restricted problem of three bodies. Rend.Circ.Mat.Palermo. 39 (1915),265–334.CrossRefzbMATHGoogle Scholar
  3. [3]
    E. Buzano,G. Geymonat,T. Poston. Post-buckling behaviour of a nonlinearly hyperelastic thin rod with cross-section invariant under dihedral group D q. Arch.Rat.Mech.Anal.89 (1989),307–388.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J.Damon. The unfolding and determinacy theorems for subgroups of A and K. Mem.AMS.306.1984.Google Scholar
  5. [5]
    J. Damon. Topological equivalence of bifurcation problems. Nonlinearity.1 (1988),311–332.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R.L. Devaney.Reversible diffeomorphisms and flows. Trans.AMS.218 (1976),89–113.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J.E.Furter. Bifurcation of subharmonics in reversible systems and the classification of bifurcation diagrams equivariant under the dihedral groups I. Period tripling. Preprint.Warwick Univ.1990.Google Scholar
  8. [8]
    J.E.Furter. Bifurcation of subharmonics in reversible systems and the classification of bifurcation diagrams equivariant under the dihedral groups II. High resonances. Preprint.Warwick Univ.1990.Google Scholar
  9. [9]
    J-J. Gervais. Bifurcations of subharmonic solutions in reversible systems. J.Diff.Eq.75 (1988),28–42.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M.Golubitsky,M.Krupa,C.C.Lim. Time reversibility and particle sedimentation. Preprint.1989.Google Scholar
  11. [11]
    J.K.Hale. Ordinary Differential Equations. McGraw-Hill.1969.Google Scholar
  12. [12]
    A.Hummel. Bifurcations of periodic points. Thesis.Groningen Univ.1979.Google Scholar
  13. [13]
    K.Kirchgässner,J.Scheurle. Global branches of periodic solutions of reversible systems. H.Brezis,H.Berestycki.Eds.Res.Notes.Math.60. Pitman.1981.Google Scholar
  14. [14]
    Y. Kuramoto,T. Yamada. Turbulent states in chemical reaction. Prog.Theo.Phys.56 (1976),679.MathSciNetCrossRefGoogle Scholar
  15. [15]
    B.A. Malomed, M.I. Tribel’skii. Bifurcations in distributed kinetic systems with aperiodic instability. Physica D. 14 (1984), 67–87.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    I. Melbourne. The recognition problem for equivariant singularities. Nonlinearity.1 (1988),215–240.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Michelson. Steady solutions of the Kuratomo-Shivashinsky equation. PhysicaD.19 (1986),89–111.MathSciNetGoogle Scholar
  18. [18]
    J.K. Moser. On the theory of quasi-periodic motions. SIAM.Rev.8 (1966),145–172.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    W.Pluschke. Invariant tori bifurcating from fixed points of nonanalytic reversible systems. Thesis.Stuttgart Univ.1989.Google Scholar
  20. [20]
    M.B.Sevryuk. Reversible Systems. Lec.Notes.Maths.1211. Springer.1986.Google Scholar
  21. [21]
    J.Scheurle. Verzweigung quasiperiodischer Lösungen bei reversiblen dynamischen Systemen. Habilitationschrift.Stuttgart Univ. 1980.Google Scholar
  22. [22]
    A.Vanderbauwhede. Local bifurcation and symmetry. Res.Notes.Math.75.Pitman.1982.Google Scholar
  23. [23]
    A. Vanderbauwhede. Bifurcation of subharmonic solutions in time reversible systems.ZAMP.37 (1986),455–477.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Vanderbauwhede. Secondary bifurcations of periodic solutions in autonomous systems. Can.Math.Soc.Proc.Conf.8 (1987),693–701.MathSciNetzbMATHGoogle Scholar
  25. [25]
    J.H. Wolkowisky. Branches of periodic solutions of the nonlinear Hill’s equation. J.Diff.Eq.11 (1972),385–400.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. E. Furter
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventry

Personalised recommendations