Local structure of equivariant dynamics

  • Mike Field
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1463)


Vector Field Periodic Orbit Relative Equilibrium Closed Subgroup Tubular Neighbourhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. F. Adams. Lectures on Lie Groups, (Benjamin, New York, 1969).zbMATHGoogle Scholar
  2. [2]
    G. E. Bredon. Introduction to Compact Transformation Groups, (Pure and Applied Mathematics, 46, Academic Press, New York and London, 1972).zbMATHGoogle Scholar
  3. [3]
    T. Bröker and T. tom Dieck. Representations of Compact Lie Groups, (Graduate Texts in Mathematics, Springer, New York, 1985).CrossRefGoogle Scholar
  4. [4]
    P. Chossat and M. Golubitsky. ‘Iterates of maps with symmetry’, Siam J. of Math. Anal., Vol. 19(6), 1988.Google Scholar
  5. [5]
    M. J. Field. ‘Equivariant Dynamical Systems’, Bull. Amer. Math. Soc., 76(1970), 1314–1318.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. J. Field. ‘Equivariant Dynamical Systems’, Trans. Amer. Math. Soc., 259 (1980), 185–205.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. J. Field. ‘On the structure of a class of equivariant maps’, Bull. Austral. Math. Soc., 26(1982), 161–180.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. J. Field. ‘Isotopy and Stability of Equivariant Diffeomorphisms’, Proc. London Math. Soc. (3), 46(1983), 487–516.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. J. Field. ‘Equivariant Dynamics’, Contemp. Math, 56(1986), 69–95.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. J. Field, ‘Equivariant Bifurcation Theory and Symmetry Breaking’, J. Dyn. Diff. Equ., Vol. 1(4), (1989), 369–421.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. G. Golubitsky and D. G. Schaeffer. Singularities and Groups in Bifurcation Theory, Vol. I, (Appl. Math. Sci. 51, Springer-Verlag, New York, 1985).CrossRefzbMATHGoogle Scholar
  12. [12]
    M. G. Golubitsky, D. G. Schaeffer and I. N. Stewart. Singularities and Groups in Bifurcation Theory, Vol. II, (Appl. Math. Sci. 69, Springer-Verlag, New York, 1988).CrossRefzbMATHGoogle Scholar
  13. [13]
    M. W. Hirsch, C. C. Pugh and M. Shub. Invariant Manifolds, (Springer Lect. Notes Math., 583, 1977).Google Scholar
  14. [14]
    M. Krupa. ‘Bifurcations of Relative Equilibria’, to appear in Siam J. of Math. Anal. Google Scholar
  15. [15]
    S. S. Smale. ‘Differentiable Dynamical Systems’, Bull. Amer. Math. Soc., 73(1967), 747–817.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. G. Golubitsky, M. Krupa and A. Vanderbauwhede. ’secondary bifurcations in symmetric systems’, Lecture Notes in Mathematics 118, (eds. C. M. Dafermos, G. Ladas, G. Papanicolaou), Marcel Dekker Inc., (1989).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Mike Field
    • 1
    • 2
  1. 1.Center for Applied mathematics Sage Hall CornellIthacaU.S.A.
  2. 2.Department of Pure MathematicsThe University of SydneySydneyAustralia

Personalised recommendations