Advertisement

On a codimension-four bifurcation occurring in optical bistability

  • G. Dangelmayr
  • M. Wegelin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1463)

Abstract

The subject of this paper is the unfolding of a singularity of vector fields in which a cusp and a degenerate Hopf bifurcation coalesce. This singularity has codimension four and appears in the mean field equations underlying optically bistable systems. We discuss the singularities of codimension smaller than four that occur as subsidiary bifurcations of the unfolding and present a two-dimensional section through the stability diagram.

Keywords

Periodic Orbit Normal Form Hopf Bifurcation Phase Portrait Unstable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Armbruster, Z. Phys. B 53 (1983), 157–166.MathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Armbruster, G. Dangelmayr and W. Güttinger, Physica 16D (1985), 99–123.Google Scholar
  3. [3]
    G. Dangelmayr and D. Armbruster, Proc. London Math. Soc. 46 (1983), 517–546.MathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Dangelmayr and M. Wegelin, in: Proceedings of the NATO-ARW on continuation and bifurcations: Numerical techniques and applications, 18–22 September 1989, Leuven, to appear.Google Scholar
  5. [5]
    F. Dumortier, R. Roussaire and J. Sotomayor: Generic three-parameter families of vector fields on the plane, unfolding a singularity. The cusp case of codimension three. Preprint.Google Scholar
  6. [6]
    J. Field and M. Burger: Oscillation in homogeneous chemical reactions, Wiley 1984.Google Scholar
  7. [7]
    P. Gaspard and X.-J. Wang, J. Stat. Phys. 48 (1987), 151–199.MathSciNetCrossRefGoogle Scholar
  8. [8]
    N. K. Gavrilov and L. P. Shilnikov, Math. USSR Sbornik 17 (1972), 467–485 and 19 (1973), 139–156.CrossRefGoogle Scholar
  9. [9]
    M. Golubitsky and W. F. Langford, J. Diff. Eq. 41 (1981), 375–415.MathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Golubitsky and D. Schaeffer: Singularities and groups in bifurcation theory, Vol. I, Springer 1985.Google Scholar
  11. [11]
    J. Guckenheimer, in: D. A. Rand and L. S. Young (eds.): Dynamical systems and turbulence, Warwick 1980, Springer 1981.Google Scholar
  12. [12]
    J. Guckenheimer, SIAM J. Math. Anal. 15 (1984), 1–49.MathSciNetCrossRefGoogle Scholar
  13. [13]
    J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer 1983.Google Scholar
  14. [14]
    J. P. Keener, SIAM J. Appl. Math. 41 (1981), 127–144.MathSciNetCrossRefGoogle Scholar
  15. [15]
    W. F. Langford, SIAM J. Appl. Math. 37 (1979), 22–48.MathSciNetCrossRefGoogle Scholar
  16. [16]
    W. F. Langford, in: G. J. Barenblat, G. Iooss, and D. D. Joseph (eds.): Nonlinear dynamics and turbulence, Pitman 1983.Google Scholar
  17. [17]
    W. F. Langford, in: Differential Equations: Qualitative theory, Colloq. Math. Soc. Janos Bolyai 47 (1986).Google Scholar
  18. [18]
    L. A. Lugiato, V. Benza and L. M. Narducci, in H. Haken (ed.): Evolution of order and chaos in physics, chemistry, and biology, Springer 1982.Google Scholar
  19. [19]
    L. A. Lugiato, L. M. Narducci and R. Lefever, in R. Graham and A. Wunderlin (eds.): Lasers and Synergetics. A colloquium on coherence and self-organization in nature, Springer 1987.Google Scholar
  20. [20]
    J. Marsden and M. McCracken (eds.): The Hopf bifurcation and its applications, Springer 1976.Google Scholar
  21. [21]
    S. E. Newhouse, Publ. Math. I. H. E. S. 50 (1979), 101–152.MathSciNetCrossRefGoogle Scholar
  22. [22]
    T. Poston and I. Stewart: Catastrophe theory and its applications, Springer 1978.Google Scholar
  23. [23]
    P. Richetti, J. C. Roux, F. Argoul and A. Arneodo, J. Chem. Phys. 86 (1987), 3339–3356.MathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Schöll: Nonequilibrium phase transitions in semiconductors, Springer 1987.Google Scholar
  25. [25]
    F. Takens, J. Diff. Eq. 14 (1973), 476–493.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Dangelmayr
  • M. Wegelin

There are no affiliations available

Personalised recommendations