Structurally stable heteroclinic cycles in a system with O(3) symmetry

  • P. Chossat
  • D. Armbruster
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1463)


The existence and stability of structurally stable heteroclinic cycles are discussed in a codimension 2 bifurcation problem with O(3)-symmetry, when the critical spherical modes 1=1 and 1=2 occur at the same time. Several types of heteroclinic cycles are found, which may explain aperiodic attractors found in numerical simulations of the onset of convection in a self-gravitating fluid spherical shell (Friedrich, Haken [1986]).


Phase Portrait Bifurcation Diagram Unstable Manifold Strange Attractor Pure Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armbruster D. Chossat P [1989]. Structurally stable heteroclinic cycles in mode interaction with O(3)-symmetry, to appear.Google Scholar
  2. Armbruster D, Guckenheimer J, Holmes P [1988]. Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry, Physica 29D, 257–282.Google Scholar
  3. Chossat P [1982]. Le problème de Bénard dans une couche sphérique, thesis, Université de Nice.Google Scholar
  4. Chossat P [1983]. Intéraction entres bifurcations de modes 1=1 et 1=2 dans les problèmes invariants par symétrie O(3), Comptes-Rendus de l’Académie des Sciences de Paris, série I, 297, 469–471.MathSciNetzbMATHGoogle Scholar
  5. Dos Reis G.L [1984]. Structural stability of equivariant vector fields on two manifolds, Trans. Amer. Math. Soc., 283, 633–643.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Friedrich R, Haken H [1986]. Static, wavelike and chaotic convection in spherical geometries, Phys. Rev. A, 34, 3, 2100–2120.CrossRefGoogle Scholar
  7. Golubitsky M, Schaeffer D [1982]. Bifurcation with O(3) symmetry including applications to the spherical Bénard problem, Comm. Pure Appl. Math., 35–81.Google Scholar
  8. Golubitsky M, Stewart I, Schaeffer D [1988]. Singularities and groups in Bifurcation theory vol. II, Appl. Math. Sci. Ser. 69, Springer Verlag, New-York.CrossRefzbMATHGoogle Scholar
  9. Guckenheimer J, Holmes P [1988]. Structurally stable heteroclinic cycles, Math. Proc. Camb. Phil. Soc., 103, 183–192.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Melbourne I, Chossat P, Golubitsky M [1988]. Heteroclinic cycles involving periodic solutions in mode interaction with O(2) symmetry, Preprint, University of Houston.Google Scholar
  11. Moutrane E [1988]. Intéraction de modes sphériques dans le problème de Bénard entre deux sphères, thesis, Université de Nice.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Chossat
  • D. Armbruster

There are no affiliations available

Personalised recommendations