Advertisement

Algebraic integrals of quadratic systems with a weak focus

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1455)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    D. Schlomiuk. The "center-space" of plane quadratic systems and its bifurcation diagram. Rapport de Recherche du Département de Mathématiques et de Statisique, D.M.S. No 88-18 L’Université de Montréal, Octobre 1988, 26 p.Google Scholar
  2. 2.
    D. Schlomiuk. Invariant reducible cubics and the conditions for the center, Rapport de Recherche du Département de Mathématiques et de Statistique, D.M.S. No 89-11, Université de Montréal, Mai 1989, 12 p.Google Scholar
  3. 3.
    D. Schlomiuk. Invariant conics of quadratic systems with a weak focus. Rapport de Recherche du Département de Mathématiques et de Statistique, D.M.S. N0 89-19, Université de Montréal, octobre 1989, 16 p.Google Scholar
  4. 4.
    D. Schlomiuk. Sufficient geometric conditions for the center for plane quadratic vector fields. Rapport de recherche du Département de Mathématique et de Statistique, D.M.S. N0 89-24, Univérsité de Montréal, décembre 1989, 8 p.Google Scholar
  5. 5.
    V. A. Lunkevich and K. S. Sibirsky. Integrals of a general quadratic differential system in cases of the center. Translated from russian from Differentsial’nye Uravnenya, vol. 18, no.5, pp 786–792, May 1982.MathSciNetGoogle Scholar
  6. 6.
    D. Schlomiuk, J. Guckenheimer, R. Rand. Integrability of plane quadratic vector fields. Expositiones Mathematicae 8, p.3–25, 1990.MathSciNetzbMATHGoogle Scholar
  7. 7.
    W. Kapteyn. On the midpoints of integral curves of differential equations of the first degree, Nederl. Acad. Wetensch. Verslagen, Afd.Natuurkunde Konikl. Nederland. 19, 1446–1457, 1911 (Dutch)Google Scholar
  8. 8.
    N. Bautin. "On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type", M. Sb. 30, 1952, 181–196, 1952 (in Russian); Amer.Math.Soc. Transl. No.100, 1954.MathSciNetzbMATHGoogle Scholar
  9. 9.
    W. Kapteyn. New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Acad. Wetensch. Verslagen, Afd.Natuurkunde Konikl. Nederland. 20, p.1354–1365; 21, p. 27–33, 1912. (Dutch)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  1. 1.Département de Mathématiques et de StatistiqueUniversité de MontréalMontréalCanada

Personalised recommendations