Advertisement

Bifurcation of limit cycles

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1455)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Andronov et al., Theory of bifurcations of dynamical systems on a plane, Kefer Press, Jerusalem (1971).Google Scholar
  2. 2.
    L.M. Perko, Global families of limit cycles of planar analytic systems, Trans. A.M.S., to appear (1990).Google Scholar
  3. 3.
    L.M. Perko, Bifurcation of limit cycles: geometric theory, submitted to Proc. A.M.S. (1990).Google Scholar
  4. 4.
    G.F.D. Duff, Limit cycles and rotated vector fields, Annals of Math., 67 (1953) 15–31.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L.M. Perko, Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane, J. Diff. Eq., 18 (1975) 63–86.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L.M. Perko, Differential equations and dynamical systems, Textbooks in Applied Math. Series, Springer Verlag, New York (1990).zbMATHGoogle Scholar
  7. 7.
    S.N. Chow and J.K. Hale, Methods of bifurcation theory, Comprehensive Studies in Mathematics, Springer Verlag, New York (1982).CrossRefzbMATHGoogle Scholar
  8. 8.
    L.M. Perko, On the accumulation of limit cycles, Proc. A.M.S., 99 (1987) 515–526.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    T.R. Blows and L.M. Perko, Bifurcation of limit cycles from centers, submitted to J. Diff. Eq. (1990).Google Scholar
  10. 10.
    C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, to appear in J. Diff. Eq. (1991).Google Scholar
  11. 11.
    J.P. Francoise and C.C. Pugh, Keeping track of limit cycles, J. Diff. Eq., 65 (1986) 139–157.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Y. Kuang, Finiteness of limit cycles of planar autonomous systems, Applicable Analysis 32 (1989) 253–264.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Wintner, Beweis des E. Stromgrenschen dynamischen Abschlusprinzipsder periodichen Bahngruppen im restringierten Dreikorperproblem, Math. Zeit, 34 (1931) 321–349.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    F. Rothe and D.S. Shafer, Bifurcation in a quartic polynomial system arising in biology, this proceedings (1990).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  1. 1.Department of MathematicsNorthern Arizona UniversityFlagstaff

Personalised recommendations