On first integrals of linear systems, Frobenius integrability theorem and linear representations of Lie algebras

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1455)


A necessary condition to be satisfied by n−1 vector fields in ℝ n in order to have a common first integral is supplied by the compatibility condition of Frobenius integrability theorem. This condition is also generically sufficient for the local existence of such a common first integral. We study here the question of the existence of a global common first integral for compatible linear vector fields in ℝ n .

For the dimension 3, we prove that any two compatible linear vector fields have a common global first integral.

On the contrary, we give an example for the dimension 4, in which three compatible linear vector fields cannot have a common global first integral.

This leads us to ask many simple and natural questions, some of them about representations of Lie algebras by Lie algebras of linear vector fields.

Some historical comments and abundant references are also provided.


Vector Field Smooth Vector Field Complete Trajectory Finite Term Linear Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. V. Amel’kin, Autonomous and linear multidimensional differential equations (in Russian), ed. Universitetskoe, Minsk (1985).Google Scholar
  2. [2]
    V. V. Amel’kin, N. A. Lukashevich, A. P. Sadovskii, Nonlinear oscillations in two-dimensional systems (in Russian), ed. of Bielorussian State University, Minsk (1982).Google Scholar
  3. [3]
    P. Basarab-Horwath, A classification of vector fields in involution with linear fields in ℝ3, preprint, Linköping (1990).Google Scholar
  4. [4]
    P. Basarab-Horwath, S. Wojciechowski, Classification of linear vector fields in ℝ3 (to be published).Google Scholar
  5. [5]
    N. Bourbaki, Eléments de mathématique, Fasc. XXXVI: Variétés différentiables et analytiques, Fascicule de résultats, Hermann, Paris (1971).zbMATHGoogle Scholar
  6. [6]
    B. Bru, J. Moulin Ollagnier, J.-M. Strelcyn, Integration in finite terms: selected bibliography up to the second world war (to be published).Google Scholar
  7. [7]
    H. Cartan, Formes différentielles, Hermann, Paris (1967).zbMATHGoogle Scholar
  8. [8]
    C. Camacho, A. Lins Neto, The topology of integrable differentiable forms near a singularity, Public. Math. IHES 55 (1982), 5–36.CrossRefzbMATHGoogle Scholar
  9. [9]
    D. Cerveau, Equations différentielles algébriques: remarques et problèmes, J. Fac. Sci. Univ. Tokyo, Sect. I-A, Math., 36 (1989), 665–680.MathSciNetzbMATHGoogle Scholar
  10. [10]
    D. Cerveau, F. Maghous, Feuilletages algébriques de C n, C. R. Acad. Sci. Paris, 303 (1986), 643–645.MathSciNetzbMATHGoogle Scholar
  11. [11]
    D. Cerveau, J. F. Mattei, Formes intégrables holomorphes singulières, Astérisques, 97 (1982).Google Scholar
  12. [12]
    P. L. Chebyshev (P. L. Tchebychef), Œuvres, Vol. I, II, Chelsea Publ. Comp., New York.Google Scholar
  13. [13]
    G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sc. Math. 2ème série t. 2 (1878), 60–96, 123–144, 151–200.zbMATHGoogle Scholar
  14. [14]
    J. H. Davenport, On the Integration of Algebraic Functions, Lecture Notes in Computer Science 102, Springer-Verlag, Berlin (1981).zbMATHGoogle Scholar
  15. [15]
    J. Dieudonné, Eléments d’analyse, tome I, Gauthier-Villars, Paris (1971).zbMATHGoogle Scholar
  16. [16]
    V. A. Dobrovolskii, Outline of the development of analytical theory of differential equations (in Russian), ed. Vischa Shkola, Kiev (1974).Google Scholar
  17. [17]
    V. A. Dobrovolskii, Vasilii Petrovich Jermakov (in Russian), Nauka, Moscow (1981).Google Scholar
  18. [18]
    B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry — Methods and Applications, vol. I Graduate Texts in Math. 93, Springer-Verlag, Berlin (1984).CrossRefzbMATHGoogle Scholar
  19. [19]
    G. Duchamp, On Frobenius integrability theorem: the analytic case (to be published).Google Scholar
  20. [20]
    A. Duval, M. Loday-Richaud, A propos de l’algorithme de Kovačic, preprint, Orsay (1989).Google Scholar
  21. [21]
    F. Engel, K. Faber, Die Liesche Theorie der partiellen Differentialgleichungen erster Ordnung, B. G. Teubner, Leipzig (1932).Google Scholar
  22. [22]
    L. Euler, De aequationis differentialibus secundi gradus, Nov. Comm. Acad. Sci. Petrop. 7 (1761), 163–202.Google Scholar
  23. [23]
    L. Euler, Institutiones calculi integralis, vol. 3, Petropoli (1770); reprinted in Opera Mathematica, vol. 13, B. G. Teubner, Leipzig (1914).Google Scholar
  24. [24]
    A. Fais, Intorno all’integrazione delle equazioni differenziali totali di 1° ordino e di 1° grado, Giornale di Matematiche 13 (1875), 344–351.Google Scholar
  25. [25]
    J. Fogarty, Invariant Theory, W. A. Benjamin, New York (1969).zbMATHGoogle Scholar
  26. [26]
    A. R. Forsyth, Theory of differential equations, vol 1–6, Cambridge University Press (1890–1906), reprinted by Dover Public., New York (1959).Google Scholar
  27. [27]
    I. V. Gaishun, Completely solvable multidimensional differentiable equations (in Russian), Ed. Nauka i Technika, Minsk (1983).Google Scholar
  28. [28]
    J. P. Gauthier, Structure des systèmes non-linéaires, Ed. du CNRS, Paris (1984).zbMATHGoogle Scholar
  29. [29]
    V. V. Golubiev, The work of P. L. Chebychev on integration of algebraic functions (in Russian), in Scientific heritage of P. L. Chebychev, Part 1: Mathematics, Ed. of Acad. of Sciences of the USSR, Moscow-Leningrad (1945), 88–121.Google Scholar
  30. [30]
    E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du premier ordre, second edition, Hermann, Paris (1921).zbMATHGoogle Scholar
  31. [31]
    E. Goursat, Cours d’analyse mathématique, Vol. 2, Paris (4th. ed. 1924). English translation: A Course of Mathematical Analysis Vol II, Part Two: Differential Equations, Dover Public., New York (1959).Google Scholar
  32. [32]
    B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn, S. Wojciechowski, Integrals of quadratic ordinary differential equations in ℝ3: the Lotka-Volterra system, Physica A 163 (1990), 683–722.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Hermann, Cartan connections and the equivalence problem for geometric structures, in Contributions to Differential Equations 3 (1964), 199–248.Google Scholar
  34. [34]
    J. Hietarinta, Direct methods for the search of the second invariant, Phys. Reports 147 (2) (1987), 87–154.MathSciNetCrossRefGoogle Scholar
  35. [35]
    E. L. Ince, Ordinary differential equations, Dover Public., New York (1956).zbMATHGoogle Scholar
  36. [36]
    C. G. J. Jacobi, De integratione aequationis differentialis (A+A′x+A″y)(x dy−y dx)−(B+B′x+B″y)dy+(C+C′x+C″y)dx=0, Crelle J. für Reine and angew. Math. 24 (1842), 1–4; reprinted in Gesammelte Werke, Band 4, 257–262, Chelsea Public. Comp., New York (1969).MathSciNetGoogle Scholar
  37. [37]
    J.-P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math. 708, Springer-Verlag, Berlin (1979)Google Scholar
  38. [38]
    B. M. Koialovich, Researches on the differential equation y dy − y dx=R dx (in Russian), Sankt Peterburg (1894).Google Scholar
  39. [39]
    B. M. Koialovich, On the problem of the integration of the differential equation y dy − y dx=R(x) dx (in Russian), in Collection of papers in honour of academician Grave, Gostekhizdat, Moscow (1940), 79–87.Google Scholar
  40. [40]
    A. N. Kolmogorov, A. P. Jushkevich (editors), Mathematics of XIX century: Chebyshev’s ideas in function theory, ordinary differential equations, variational calculus, calculus of finite differences (in Russian), Nauka, Moscow, (1987).Google Scholar
  41. [41]
    A. N. Korkine, Sur les équations différentielles ordinaires du premier ordre, C. R. Acad. Sc. Paris 122 (1896), 1184–1186, errata in C. R. Acad. Sc. Paris 123, 139; reprinted in [60], vol. 2, 534–536.zbMATHGoogle Scholar
  42. [42]
    A. N. Korkine, Sur les équations différentielles ordinaires du premier ordre, C. R. Acad. Sc. Paris 123 (1896), 38–40; reprinted in [60] vol. 2, 537–539.zbMATHGoogle Scholar
  43. [43]
    A. N. Korkine, Sur les équations différentielles ordinaires du premier ordre, Math. Ann. 48 (1897), 317–364.MathSciNetCrossRefGoogle Scholar
  44. [44]
    A. N. Korkine, Thoughts about multipliers of differential equations of first degree (in Russian), Math. Sbornik 24 (1904), 194–350 and 351–416.Google Scholar
  45. [45]
    J. Kovačic, An algorithm for solving second order linear homogenous differential equations, J. Symb. Comp. 2 (1986), 3–43.CrossRefzbMATHGoogle Scholar
  46. [46]
    V. V. Kozlov, Integrability and non-integrability in Hamiltonian mechanics (in Russian), Uspekhi Mat. Nauk. 38 (1) (1983), 3–67; English translation in Russian Math Surveys 38 (1), (1983), 1–76.MathSciNetzbMATHGoogle Scholar
  47. [47]
    S. G. Krein, N. I. Yatskin, Linear differential equations on manifolds (in Russian), Editions of Voronezh University, Voronezh (1980).Google Scholar
  48. [48]
    S. Lang, Differentiable Manifolds, Springer-Verlag, Berlin, (1985).CrossRefGoogle Scholar
  49. [49]
    K. Ja. Latysheva, On the works of V. P. Jermakov on the theory of differential equations (in Russian), Istoriko-Matematicheskije Issledovanija 9, Gostekhizdat, Moscow (1956), 691–722.Google Scholar
  50. [50]
    S. Lie, Gesammelte Abhandlungen, Band 3, 4, B. G. Teubner, Leipzig (1922, 1929).Google Scholar
  51. [51]
    A. Lins Neto, Local structural stability of C 2 integrable forms, Ann. Inst. Fourier, Grenoble 27 (2), (1977), 197–225.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    N. V. Lokot’, Thesis (in Russian, unpublished), Leningrad State Pedagogical Institute (1989).Google Scholar
  53. [53]
    P. Malliavin, Géométrie différentielle intrinsèque, Hermann, Paris (1972).zbMATHGoogle Scholar
  54. [54]
    D. Morduhai-Boltovskoi, Researches on the integration in finite terms of differential equations of the first order (in Russian), Communications de la Société Mathématique de Kharkov, 10 (1906–1909), 34–64 and 231–269; english translation of pp. 34–64 by B. Korenblum and M. J. Prelle, SIGSAM Bulletin 15 (2), (1981), 20–32.Google Scholar
  55. [55]
    D. Morduhai-Boltovskoi, On integration of linear differential equations in finite terms (in Russian), Warsaw (1910).Google Scholar
  56. [56]
    D. Morduhai-Boltovskoi, Sur la résolution des équations différentielles du premier ordre en forme finie, Rend. Circ. Matem. Palermo 61 (1937), 49–72.CrossRefGoogle Scholar
  57. [57]
    T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398–404.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    P. J. Olver, Applications of Lie groups to Differential Equations, Graduate Texts in Math. 107, Springer-Verlag (1986).Google Scholar
  59. [59]
    J. Patera, R. T. Sharp, P. Winternitz, Invariants of real low dimensional Lie algebras, Journal of Math. Phys. 17 (6) (1976), 986–994.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    P. Painlevé, Œuvres, tomes 1–3, Ed. du CNRS, Paris (1972–1974–1975).Google Scholar
  61. [61]
    P. Painlevé, Sur les intégrales rationnelles des équations différentielles du premier ordre, C. R. Acad. Sc. Paris 110 (1890), 34–36; reprinted in Œuvres, tome 2, 220–222.zbMATHGoogle Scholar
  62. [62]
    P. Painlevé, Sur les intégrales algébriques des équations différentielles du premier ordre, C. R. Acad. Sc. Paris 110 (1890), 945–948; reprinted in Œuvres, tome 2, 233–235.zbMATHGoogle Scholar
  63. [63]
    P. Painlevé, Mémoire sur les équations différentielles du premier ordre, Ann. Ecole Norm. Sup. 1ère partie: 8 (1891), 9–58, 103–140; 2ème partie: 8 (1891), 201–226, 267–284 and 9 (1891), 9–30; 3ème partie: 9 (1892), 101–144, 283–308; reprinted in Œuvres, tome 2, 237–461.zbMATHGoogle Scholar
  64. [64]
    P. Painlevé, Leçons sur la théorie analytique des équations différentielles professées à Stockholm (Septembre, Octobre, Novembre 1895), sur l’invitation de S. M. le Roi de Suède et de Norvége, Ed. Hermann, Paris (1897), reprinted in Œuvres, tome 1, 205–800.Google Scholar
  65. [65]
    P. Painlevé, Mémoire sur les équations différentielles du premier ordre dont l’intégrale est de la forme Open image in new window, Ann. Fac. Sc. Univ. Toulouse (1896), 1–37; reprinted in Œuvres, tome 2, 546–582.Google Scholar
  66. [66]
    E. Picard, Sur un théorème de M. Darboux, C. R. Acad Sc. Paris 100 (1885) 618–620; reprinted in Ch. E. Picard, Œuvres, tome II, 105–107, Ed. du CNRS, Paris (1979).zbMATHGoogle Scholar
  67. [67]
    V. Poènaru, Singularités C en Présence de Symétrie, Lect. Notes in Math. 510, Springer-Verlag, Berlin (1976).CrossRefGoogle Scholar
  68. [68]
    H. Poincaré, Sur l’intégration algébrique des équations différentielles, C. R. Acad Sc. Paris 112 (1891) 761–764; reprinted in Œuvres, tome III, 32–34, Gauthier-Villars, Paris (1965).zbMATHGoogle Scholar
  69. [69]
    H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Rendic. Circ. Matem. Palermo 5 (1891) 161–191; reprinted in Œuvres, tome III, 35–58, Gauthier-Villars, Paris (1965).CrossRefzbMATHGoogle Scholar
  70. [70]
    H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Rendic. Circ. Matem. Palermo 11 (1897) 193–239; reprinted in Œuvres, tome III, 59–94, Gauthier-Villars, Paris (1965).CrossRefzbMATHGoogle Scholar
  71. [71]
    M. J. Prelle, M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1) (1983), 215–229.MathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    J. F. Price, Lie Groups and Compact Groups, London Math. Soc. Lect. Notes 25, Cambridge Univ. Press, Cambridge (1977).CrossRefzbMATHGoogle Scholar
  73. [73]
    A. Ramani, B. Grammaticos, T. Bountis, The Painlevé property and singularity analysis of integrable and non-integrable systems, Phys. Reports 180 (1989), 159–245.MathSciNetCrossRefGoogle Scholar
  74. [74]
    F. Schwartz, Symmetries of Differential Equations: From Sophus Lie to Computer Algebra, SIAM Review 30 (3) (1988) 450–481.MathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    N. I. Simonov, Euler’s applied methods of analysis (in Russian), ed. Gostekhizdat, Moscow (1957).Google Scholar
  76. [76]
    S. Sternberg, Lectures on Differential Geometry, Prentice Hall (1964), reprinted by Chelsea Public. Comp., New York.zbMATHGoogle Scholar
  77. [77]
    J.-M. Strelcyn, S. Wojciechowski, A method of finding integrals of 3-dimensional dynamical systemes, Phys. Letters 133 A (1988) 207–212.MathSciNetCrossRefGoogle Scholar
  78. [78]
    H. J. Sussman, Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, R. W. Brockett, R. S. Millman, H. J. Sussman (edit.), Progress in Mathematics 27, Birkhauser, Basel (1983), 1–116.Google Scholar
  79. [79]
    E. Tournier (edit.), Computer Algebra and Differential Equations, Acad. Press, New York (1989).Google Scholar
  80. [80]
    E. Vessiot, Méthodes d’intégrations élémentaires. Etude des équations différentielles ordinaires au point de vue formel, in Encyclopédie des Sciences Mathématiques Pures et Appliquées, tome II, vol. 3, fasc. 1, Gauthier-Villars, Paris and B. G. Teubner, Leipzig (1910), 58–170.Google Scholar
  81. [81]
    E. von Weber, Propriétés générales des sytèmes d’équations aux dérivées partielles. Equations linéaires du premier ordre, in Encyclopédie des Sciences Mathématiques Pures et appliquées, tome II, vol. 4, fasc. 1, Gauthier-Villars, Paris and B. G. Teubner, Leipzig (1913), 1–55.Google Scholar
  82. [82]
    H. Weyl, Classical Groups, Their Invariants and Representations, second edit., Princeton University Press, Princeton (1946).zbMATHGoogle Scholar
  83. [83]
    V. F. Zaitsev, Discret group theoretical analysis of ordinary differential equations (in Russian), Differentsialnye Uravnienia, 25 (3) (1989), 379–387; english translation: Differential Equations, 25 (1989).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  1. 1.Département de Mathématiques et Informatique, UA CNRS 742, C. S. P.Université ParisNordVilletaneuseFrance
  2. 2.Départment de MathématiquesUniversité de RouenMont-Saint-Aignan CedexFrance

Personalised recommendations