Skip to main content

On first integrals of linear systems, Frobenius integrability theorem and linear representations of Lie algebras

  • Conference paper
  • First Online:
Bifurcations of Planar Vector Fields

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1455))

Abstract

A necessary condition to be satisfied by n−1 vector fields in ℝn in order to have a common first integral is supplied by the compatibility condition of Frobenius integrability theorem. This condition is also generically sufficient for the local existence of such a common first integral. We study here the question of the existence of a global common first integral for compatible linear vector fields in ℝn.

For the dimension 3, we prove that any two compatible linear vector fields have a common global first integral.

On the contrary, we give an example for the dimension 4, in which three compatible linear vector fields cannot have a common global first integral.

This leads us to ask many simple and natural questions, some of them about representations of Lie algebras by Lie algebras of linear vector fields.

Some historical comments and abundant references are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. V. Amel’kin, Autonomous and linear multidimensional differential equations (in Russian), ed. Universitetskoe, Minsk (1985).

    Google Scholar 

  2. V. V. Amel’kin, N. A. Lukashevich, A. P. Sadovskii, Nonlinear oscillations in two-dimensional systems (in Russian), ed. of Bielorussian State University, Minsk (1982).

    Google Scholar 

  3. P. Basarab-Horwath, A classification of vector fields in involution with linear fields in ℝ3, preprint, Linköping (1990).

    Google Scholar 

  4. P. Basarab-Horwath, S. Wojciechowski, Classification of linear vector fields in ℝ3 (to be published).

    Google Scholar 

  5. N. Bourbaki, Eléments de mathématique, Fasc. XXXVI: Variétés différentiables et analytiques, Fascicule de résultats, Hermann, Paris (1971).

    MATH  Google Scholar 

  6. B. Bru, J. Moulin Ollagnier, J.-M. Strelcyn, Integration in finite terms: selected bibliography up to the second world war (to be published).

    Google Scholar 

  7. H. Cartan, Formes différentielles, Hermann, Paris (1967).

    MATH  Google Scholar 

  8. C. Camacho, A. Lins Neto, The topology of integrable differentiable forms near a singularity, Public. Math. IHES 55 (1982), 5–36.

    Article  MATH  Google Scholar 

  9. D. Cerveau, Equations différentielles algébriques: remarques et problèmes, J. Fac. Sci. Univ. Tokyo, Sect. I-A, Math., 36 (1989), 665–680.

    MathSciNet  MATH  Google Scholar 

  10. D. Cerveau, F. Maghous, Feuilletages algébriques de C n, C. R. Acad. Sci. Paris, 303 (1986), 643–645.

    MathSciNet  MATH  Google Scholar 

  11. D. Cerveau, J. F. Mattei, Formes intégrables holomorphes singulières, Astérisques, 97 (1982).

    Google Scholar 

  12. P. L. Chebyshev (P. L. Tchebychef), Œuvres, Vol. I, II, Chelsea Publ. Comp., New York.

    Google Scholar 

  13. G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sc. Math. 2ème série t. 2 (1878), 60–96, 123–144, 151–200.

    MATH  Google Scholar 

  14. J. H. Davenport, On the Integration of Algebraic Functions, Lecture Notes in Computer Science 102, Springer-Verlag, Berlin (1981).

    MATH  Google Scholar 

  15. J. Dieudonné, Eléments d’analyse, tome I, Gauthier-Villars, Paris (1971).

    MATH  Google Scholar 

  16. V. A. Dobrovolskii, Outline of the development of analytical theory of differential equations (in Russian), ed. Vischa Shkola, Kiev (1974).

    Google Scholar 

  17. V. A. Dobrovolskii, Vasilii Petrovich Jermakov (in Russian), Nauka, Moscow (1981).

    Google Scholar 

  18. B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry — Methods and Applications, vol. I Graduate Texts in Math. 93, Springer-Verlag, Berlin (1984).

    Book  MATH  Google Scholar 

  19. G. Duchamp, On Frobenius integrability theorem: the analytic case (to be published).

    Google Scholar 

  20. A. Duval, M. Loday-Richaud, A propos de l’algorithme de Kovačic, preprint, Orsay (1989).

    Google Scholar 

  21. F. Engel, K. Faber, Die Liesche Theorie der partiellen Differentialgleichungen erster Ordnung, B. G. Teubner, Leipzig (1932).

    Google Scholar 

  22. L. Euler, De aequationis differentialibus secundi gradus, Nov. Comm. Acad. Sci. Petrop. 7 (1761), 163–202.

    Google Scholar 

  23. L. Euler, Institutiones calculi integralis, vol. 3, Petropoli (1770); reprinted in Opera Mathematica, vol. 13, B. G. Teubner, Leipzig (1914).

    Google Scholar 

  24. A. Fais, Intorno all’integrazione delle equazioni differenziali totali di 1° ordino e di 1° grado, Giornale di Matematiche 13 (1875), 344–351.

    Google Scholar 

  25. J. Fogarty, Invariant Theory, W. A. Benjamin, New York (1969).

    MATH  Google Scholar 

  26. A. R. Forsyth, Theory of differential equations, vol 1–6, Cambridge University Press (1890–1906), reprinted by Dover Public., New York (1959).

    Google Scholar 

  27. I. V. Gaishun, Completely solvable multidimensional differentiable equations (in Russian), Ed. Nauka i Technika, Minsk (1983).

    Google Scholar 

  28. J. P. Gauthier, Structure des systèmes non-linéaires, Ed. du CNRS, Paris (1984).

    MATH  Google Scholar 

  29. V. V. Golubiev, The work of P. L. Chebychev on integration of algebraic functions (in Russian), in Scientific heritage of P. L. Chebychev, Part 1: Mathematics, Ed. of Acad. of Sciences of the USSR, Moscow-Leningrad (1945), 88–121.

    Google Scholar 

  30. E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du premier ordre, second edition, Hermann, Paris (1921).

    MATH  Google Scholar 

  31. E. Goursat, Cours d’analyse mathématique, Vol. 2, Paris (4th. ed. 1924). English translation: A Course of Mathematical Analysis Vol II, Part Two: Differential Equations, Dover Public., New York (1959).

    Google Scholar 

  32. B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn, S. Wojciechowski, Integrals of quadratic ordinary differential equations in ℝ3: the Lotka-Volterra system, Physica A 163 (1990), 683–722.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Hermann, Cartan connections and the equivalence problem for geometric structures, in Contributions to Differential Equations 3 (1964), 199–248.

    Google Scholar 

  34. J. Hietarinta, Direct methods for the search of the second invariant, Phys. Reports 147 (2) (1987), 87–154.

    Article  MathSciNet  Google Scholar 

  35. E. L. Ince, Ordinary differential equations, Dover Public., New York (1956).

    MATH  Google Scholar 

  36. C. G. J. Jacobi, De integratione aequationis differentialis (A+A′x+A″y)(x dy−y dx)−(B+B′x+B″y)dy+(C+C′x+C″y)dx=0, Crelle J. für Reine and angew. Math. 24 (1842), 1–4; reprinted in Gesammelte Werke, Band 4, 257–262, Chelsea Public. Comp., New York (1969).

    MathSciNet  Google Scholar 

  37. J.-P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math. 708, Springer-Verlag, Berlin (1979)

    Google Scholar 

  38. B. M. Koialovich, Researches on the differential equation y dy − y dx=R dx (in Russian), Sankt Peterburg (1894).

    Google Scholar 

  39. B. M. Koialovich, On the problem of the integration of the differential equation y dy − y dx=R(x) dx (in Russian), in Collection of papers in honour of academician Grave, Gostekhizdat, Moscow (1940), 79–87.

    Google Scholar 

  40. A. N. Kolmogorov, A. P. Jushkevich (editors), Mathematics of XIX century: Chebyshev’s ideas in function theory, ordinary differential equations, variational calculus, calculus of finite differences (in Russian), Nauka, Moscow, (1987).

    Google Scholar 

  41. A. N. Korkine, Sur les équations différentielles ordinaires du premier ordre, C. R. Acad. Sc. Paris 122 (1896), 1184–1186, errata in C. R. Acad. Sc. Paris 123, 139; reprinted in [60], vol. 2, 534–536.

    MATH  Google Scholar 

  42. A. N. Korkine, Sur les équations différentielles ordinaires du premier ordre, C. R. Acad. Sc. Paris 123 (1896), 38–40; reprinted in [60] vol. 2, 537–539.

    MATH  Google Scholar 

  43. A. N. Korkine, Sur les équations différentielles ordinaires du premier ordre, Math. Ann. 48 (1897), 317–364.

    Article  MathSciNet  Google Scholar 

  44. A. N. Korkine, Thoughts about multipliers of differential equations of first degree (in Russian), Math. Sbornik 24 (1904), 194–350 and 351–416.

    Google Scholar 

  45. J. Kovačic, An algorithm for solving second order linear homogenous differential equations, J. Symb. Comp. 2 (1986), 3–43.

    Article  MATH  Google Scholar 

  46. V. V. Kozlov, Integrability and non-integrability in Hamiltonian mechanics (in Russian), Uspekhi Mat. Nauk. 38 (1) (1983), 3–67; English translation in Russian Math Surveys 38 (1), (1983), 1–76.

    MathSciNet  MATH  Google Scholar 

  47. S. G. Krein, N. I. Yatskin, Linear differential equations on manifolds (in Russian), Editions of Voronezh University, Voronezh (1980).

    Google Scholar 

  48. S. Lang, Differentiable Manifolds, Springer-Verlag, Berlin, (1985).

    Book  Google Scholar 

  49. K. Ja. Latysheva, On the works of V. P. Jermakov on the theory of differential equations (in Russian), Istoriko-Matematicheskije Issledovanija 9, Gostekhizdat, Moscow (1956), 691–722.

    Google Scholar 

  50. S. Lie, Gesammelte Abhandlungen, Band 3, 4, B. G. Teubner, Leipzig (1922, 1929).

    Google Scholar 

  51. A. Lins Neto, Local structural stability of C 2 integrable forms, Ann. Inst. Fourier, Grenoble 27 (2), (1977), 197–225.

    Article  MathSciNet  MATH  Google Scholar 

  52. N. V. Lokot’, Thesis (in Russian, unpublished), Leningrad State Pedagogical Institute (1989).

    Google Scholar 

  53. P. Malliavin, Géométrie différentielle intrinsèque, Hermann, Paris (1972).

    MATH  Google Scholar 

  54. D. Morduhai-Boltovskoi, Researches on the integration in finite terms of differential equations of the first order (in Russian), Communications de la Société Mathématique de Kharkov, 10 (1906–1909), 34–64 and 231–269; english translation of pp. 34–64 by B. Korenblum and M. J. Prelle, SIGSAM Bulletin 15 (2), (1981), 20–32.

    Google Scholar 

  55. D. Morduhai-Boltovskoi, On integration of linear differential equations in finite terms (in Russian), Warsaw (1910).

    Google Scholar 

  56. D. Morduhai-Boltovskoi, Sur la résolution des équations différentielles du premier ordre en forme finie, Rend. Circ. Matem. Palermo 61 (1937), 49–72.

    Article  Google Scholar 

  57. T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398–404.

    Article  MathSciNet  MATH  Google Scholar 

  58. P. J. Olver, Applications of Lie groups to Differential Equations, Graduate Texts in Math. 107, Springer-Verlag (1986).

    Google Scholar 

  59. J. Patera, R. T. Sharp, P. Winternitz, Invariants of real low dimensional Lie algebras, Journal of Math. Phys. 17 (6) (1976), 986–994.

    Article  MathSciNet  MATH  Google Scholar 

  60. P. Painlevé, Œuvres, tomes 1–3, Ed. du CNRS, Paris (1972–1974–1975).

    Google Scholar 

  61. P. Painlevé, Sur les intégrales rationnelles des équations différentielles du premier ordre, C. R. Acad. Sc. Paris 110 (1890), 34–36; reprinted in Œuvres, tome 2, 220–222.

    MATH  Google Scholar 

  62. P. Painlevé, Sur les intégrales algébriques des équations différentielles du premier ordre, C. R. Acad. Sc. Paris 110 (1890), 945–948; reprinted in Œuvres, tome 2, 233–235.

    MATH  Google Scholar 

  63. P. Painlevé, Mémoire sur les équations différentielles du premier ordre, Ann. Ecole Norm. Sup. 1ère partie: 8 (1891), 9–58, 103–140; 2ème partie: 8 (1891), 201–226, 267–284 and 9 (1891), 9–30; 3ème partie: 9 (1892), 101–144, 283–308; reprinted in Œuvres, tome 2, 237–461.

    MATH  Google Scholar 

  64. P. Painlevé, Leçons sur la théorie analytique des équations différentielles professées à Stockholm (Septembre, Octobre, Novembre 1895), sur l’invitation de S. M. le Roi de Suède et de Norvége, Ed. Hermann, Paris (1897), reprinted in Œuvres, tome 1, 205–800.

    Google Scholar 

  65. P. Painlevé, Mémoire sur les équations différentielles du premier ordre dont l’intégrale est de la forme , Ann. Fac. Sc. Univ. Toulouse (1896), 1–37; reprinted in Œuvres, tome 2, 546–582.

    Google Scholar 

  66. E. Picard, Sur un théorème de M. Darboux, C. R. Acad Sc. Paris 100 (1885) 618–620; reprinted in Ch. E. Picard, Œuvres, tome II, 105–107, Ed. du CNRS, Paris (1979).

    MATH  Google Scholar 

  67. V. Poènaru, Singularités C en Présence de Symétrie, Lect. Notes in Math. 510, Springer-Verlag, Berlin (1976).

    Chapter  Google Scholar 

  68. H. Poincaré, Sur l’intégration algébrique des équations différentielles, C. R. Acad Sc. Paris 112 (1891) 761–764; reprinted in Œuvres, tome III, 32–34, Gauthier-Villars, Paris (1965).

    MATH  Google Scholar 

  69. H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Rendic. Circ. Matem. Palermo 5 (1891) 161–191; reprinted in Œuvres, tome III, 35–58, Gauthier-Villars, Paris (1965).

    Article  MATH  Google Scholar 

  70. H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Rendic. Circ. Matem. Palermo 11 (1897) 193–239; reprinted in Œuvres, tome III, 59–94, Gauthier-Villars, Paris (1965).

    Article  MATH  Google Scholar 

  71. M. J. Prelle, M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1) (1983), 215–229.

    Article  MathSciNet  MATH  Google Scholar 

  72. J. F. Price, Lie Groups and Compact Groups, London Math. Soc. Lect. Notes 25, Cambridge Univ. Press, Cambridge (1977).

    Book  MATH  Google Scholar 

  73. A. Ramani, B. Grammaticos, T. Bountis, The Painlevé property and singularity analysis of integrable and non-integrable systems, Phys. Reports 180 (1989), 159–245.

    Article  MathSciNet  Google Scholar 

  74. F. Schwartz, Symmetries of Differential Equations: From Sophus Lie to Computer Algebra, SIAM Review 30 (3) (1988) 450–481.

    Article  MathSciNet  MATH  Google Scholar 

  75. N. I. Simonov, Euler’s applied methods of analysis (in Russian), ed. Gostekhizdat, Moscow (1957).

    Google Scholar 

  76. S. Sternberg, Lectures on Differential Geometry, Prentice Hall (1964), reprinted by Chelsea Public. Comp., New York.

    MATH  Google Scholar 

  77. J.-M. Strelcyn, S. Wojciechowski, A method of finding integrals of 3-dimensional dynamical systemes, Phys. Letters 133 A (1988) 207–212.

    Article  MathSciNet  Google Scholar 

  78. H. J. Sussman, Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, R. W. Brockett, R. S. Millman, H. J. Sussman (edit.), Progress in Mathematics 27, Birkhauser, Basel (1983), 1–116.

    Google Scholar 

  79. E. Tournier (edit.), Computer Algebra and Differential Equations, Acad. Press, New York (1989).

    Google Scholar 

  80. E. Vessiot, Méthodes d’intégrations élémentaires. Etude des équations différentielles ordinaires au point de vue formel, in Encyclopédie des Sciences Mathématiques Pures et Appliquées, tome II, vol. 3, fasc. 1, Gauthier-Villars, Paris and B. G. Teubner, Leipzig (1910), 58–170.

    Google Scholar 

  81. E. von Weber, Propriétés générales des sytèmes d’équations aux dérivées partielles. Equations linéaires du premier ordre, in Encyclopédie des Sciences Mathématiques Pures et appliquées, tome II, vol. 4, fasc. 1, Gauthier-Villars, Paris and B. G. Teubner, Leipzig (1913), 1–55.

    Google Scholar 

  82. H. Weyl, Classical Groups, Their Invariants and Representations, second edit., Princeton University Press, Princeton (1946).

    MATH  Google Scholar 

  83. V. F. Zaitsev, Discret group theoretical analysis of ordinary differential equations (in Russian), Differentsialnye Uravnienia, 25 (3) (1989), 379–387; english translation: Differential Equations, 25 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Pierre Françoise Robert Roussarie

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Ollagnier, J.M., Strelcyn, JM. (1990). On first integrals of linear systems, Frobenius integrability theorem and linear representations of Lie algebras. In: Françoise, JP., Roussarie, R. (eds) Bifurcations of Planar Vector Fields. Lecture Notes in Mathematics, vol 1455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0085396

Download citation

  • DOI: https://doi.org/10.1007/BFb0085396

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53509-6

  • Online ISBN: 978-3-540-46722-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics