Advertisement

Conditions for a centre and the bifurcation of limit cycles in a class of cubic systems

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1455)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J M Abdulrahman, Bifurcation of limit cycles of some polynomial systems (PhD thesis, The University College of Wales, Aberystwyth, 1989).Google Scholar
  2. 2.
    T R Blows and N G Lloyd, ‘The number of limit cycles of certain polynomial differential equations’, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984) 215–239.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C J Christopher and N G Lloyd, ‘On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems’, Bull. London Math. Soc., 94 (1990) 5–12.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C J Christopher and N G Lloyd, ‘Invariant algebraic curves and conditions for a centre’, pre print, The University College of Wales, Aberystwyth, 1989.Google Scholar
  5. 5.
    E M James and N G Lloyd, ‘A cubic system with eight small-amplitude limit cycles’, preprint The University College of Wales, Aberystwyth, 1990.zbMATHGoogle Scholar
  6. 6.
    E M James and N Yasmin, ‘Limit cycles of a cubic system’, preprint, The University College of Wales, Aberystwyth, 1989.Google Scholar
  7. 7.
    Jin Xiaofan and Wang Dongmin, ‘On Kukles’ conditions for the existence of a centre’, Bull London Math. Soc., 94 (1990) 1–4.Google Scholar
  8. 8.
    I S Kukles, ‘Sur quelques cas de distinction entre un foyer et un centre’, Dokl. Akad. Nauk. SSSR 42 (1944) 208–211.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Li Jibin and Bai Jinxin, ‘The cyclicity of multiple Hopf bifurcation in planar cubic differential systems: M(3) ≥ 7′, preprint, Kunming Institute of Technology, 1989.Google Scholar
  10. 10.
    N G Lloyd, ‘Limit cycles of polynomial systems’, New directions in dynamical systems, London Math. Soc. Lecture Notes Series No. 127 (ed. T Bedford and J Swift, Cambridge University Press, 1988), pp. 192–234.Google Scholar
  11. 11.
    N G Lloyd, ‘The number of limit cycles of polynomial systems in the plane’, Bull. Inst. Math. Appl. 24 (1988), 161–165.MathSciNetzbMATHGoogle Scholar
  12. 12.
    N G Lloyd, T R Blows and M C Kalenge, ‘Some cubic systems with several limit cycles’, Nonlinearity 1 (1988) 653–669.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N G Lloyd and S Lynch, ‘Small amplitude limit cycles of certain Lienard systems’, Proc. Royal Soc. London Ser A 418 (1988) 199–208.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    N G Lloyd and J M Pearson, ‘REDUCE and the bifurcation of limit cycles’, J. Symbolic Comput., to appear.Google Scholar
  15. 15.
    V V Nemytskii and V V Stepanov, Qualitative theory of differential equations (Princeton University Press, 1960).Google Scholar
  16. 16.
    K S Sibirskii and V A Lunkevich, ‘On the conditions for a centre’, Differencial’nye Uravneniya 1 (1965) 53–66.Google Scholar
  17. 17.
    B L van der Waerden, Modern Algebra, Volume 1 (English translation, Frederick Ungar, New York, 1949).Google Scholar
  18. 18.
    Wang Dongmin, ‘A class of cubic differential systems with 6-tuple focus’, Technical report 88-47.0, RISC, University of Linz, 1988.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  1. 1.Department of MathematicsThe University College of WalesAberystwythUK

Personalised recommendations