Periodic lines of curvature bifurcating from Darbouxian umbilical connections

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1455)


The configurations of lines of curvature around separatrices joining Darbouxian umbilical points as well as their patterns of bifurcation to closed principal lines are studied in this work.


Vector Field Phase Portrait Principal Curvature Positive Orientation Umbilical Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    Andronov A., Leontovich E. et al., Theory of Bifurcations of Dynamical Systems on the plane. John Wiley, New York (1973)Google Scholar
  2. [B-G]
    Bruce J. W., Giblin P. J., Generic curves and Surfaces. J. London Math. Soc. (2), 24 (1981).Google Scholar
  3. [Ca]
    Cayley A., On differential equations and umbilici. Philos. Mag., 26, (1963), 373–379, 441–452, (Collected works, Vol V).Google Scholar
  4. [Car]
    Cartan H., Théorie èlèmentaire des fonctions analytiques d’une ou plusieurs variables complexes. Paris, Hermann, (1961).zbMATHGoogle Scholar
  5. [Da]
    Darboux G., Sur la forme des lignes de courbure dans le voisinage d’un ombilic. Note VII, Leçons sur la théorie générale des surfaces. IV. Gauthier-Villars. (1986).Google Scholar
  6. [Du]
    Dulac H., On limit cycles. Bull. Soc. Math. Franc. (1923).Google Scholar
  7. [Ec]
    Ecalle J., Finitude des cycles limites et accelero sommations de l’application de retour. To appear. (1990).Google Scholar
  8. [Fi]
    Fischer G., Mathematical Models. Friedr Vieweg and Sohn, (1986).Google Scholar
  9. [Gu]
    Gullstrand A., Zur Kenntniss der Kreispunkte. Acta Math. 29, (1905).Google Scholar
  10. [Gui]
    Guiñez V., Positive quadratic differential forms and foliations with singularities on surfaces. Trans. Amer. Math. Soc. 309, No. 2, (1988).Google Scholar
  11. [Gut]
    Gutierrez C., Smoothing continuous flows on two-manifolds and recurrences. Ergod. Th. and Dynam. Sys. 6, 17–44, (1986).MathSciNetzbMATHGoogle Scholar
  12. [GS1]
    Gutierrez C., Sotomayor J. Structurally stable configurations of lines of principal curvature. Asterisque 98–99 (1982).Google Scholar
  13. [GS2]
    Gutierrez C.,Sotomayor J. An approximation theorem for immersions with stable configurations of lines of principal curvature. Springer Lectures Notes in Math. 1007 (1983).Google Scholar
  14. [GS3]
    Gutierrez C.,Sotomayor J. Stability and bifurcations of configurations of principal lines. Aport. Mat. 1 (1985), Soc. Mat. Mex.Google Scholar
  15. [GS4]
    Gutierrez C.,Sotomayor J. Closed principal lines and bifurcations. Bol. Soc. Bras. Mat. 17 (1986).Google Scholar
  16. [GS5]
    Gutierrez C.,Sotomayor J. Bifurcations of umbilical points and related principal cycles. In preparation.Google Scholar
  17. [GS6]
    Gutierrez C.,Sotomayor J. Principal lines on surfaces immersed with constant mean curvature. Trans. Amer. Math. Soc. 293, No. 2 (1986).Google Scholar
  18. [Hr]
    Hartman P. Ordinary differential equations. J. Wiley (1964).Google Scholar
  19. [Iy1]
    Il’yasenko Yu. S. Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane. Funk. Anal. Ego. Pri., 18, 3, (1984), 32–34. (Func. Anal. and Appl., 18, 3, (1985), 199–209).MathSciNetGoogle Scholar
  20. [Iy2]
    Il’yasenko Yu. S. Fineteness theorems for limit cycles. (In russian, to appear).Google Scholar
  21. [Le]
    Levitt G. La decomposition dynamique et la différentiabilité des feuilletages des surfaces. Ann. Inst. Fourier, 37, 3, (1987), 85–116.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Mo]
    Montaldi J. Contact with applications to submanifolds of R n. Thesis. Liverpool (1983).Google Scholar
  23. [Mou]
    Moussu R. Le problème de la finitude du nombre de cycles limites. Séminaire Bourbaki. 38’eme anée, 655 (1985–86).Google Scholar
  24. [Po]
    Porteous I. R., The normal singularities of a submanifold. J. Diff. Geom. 5 (1971).Google Scholar
  25. [P-S]
    Paterlini R., Sotomayor J. Bifurcations of planar polinomial vector fields. Can. Math. Soc. Conference Proceedings 8, (1987).Google Scholar
  26. [Re]
    Reyn J. W., Generation of limit cycles from separatrix polygons in the phase plane. Springer Lecture Notes in Math. 810. (1980).Google Scholar
  27. [Ro]
    Rosenberg H. Labyrinths in discs and surfaces. Ann. Math. 117 (1983), 1–33.CrossRefzbMATHGoogle Scholar
  28. [So]
    Sotomayor J. Generic one-parameter families of vector fields on two-dimensional manifolds. Publ.Math. IHES 43 (1974).Google Scholar
  29. [Sp]
    Spivak M. A comprehensive Introduction to differential geometry. Berkeley, Publish or Perish Inc. (1979).Google Scholar
  30. [St]
    Struik D. Lectures on classical differential geometry. Addisson Wesley. (1950).Google Scholar
  31. [Th]
    Thom R. Stabilité structurelle et morphogénèse. Benjamin, (1972).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  1. 1.Instituto de Matemática Pura e AplicadaRio de Janeiro R.J.Brasil

Personalised recommendations