Advertisement

Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees

  • Etienne Pardoux
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1464)

Keywords

Stochastic Partial Differential Equation Malliavin Calculus Nous Allons Dimension Finie Nous Renvoyons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R.A. Adams: Sobolev spaces, Acad. Press 1975.Google Scholar
  2. [2]
    F. Alinger, S.K. Mitter: New results on the innovations problem for non-linear filtering, Stochastics 4, 339–348, 1981.CrossRefzbMATHGoogle Scholar
  3. [3]
    J. Baras, G. Blankenship, W. Hopkins: Existence, uniquenes and asymptotic behavior of solutions to a class of Zakai equations with unbounded coefficients, IEEE Trans. AC-28, 203–214, 1983.MathSciNetzbMATHGoogle Scholar
  4. [4]
    C. Bardos, L. Tartar: Sur l'unicité des équations paraboliques et quelques questions voisines, Arkive for Rat. Mech. and Anal. 50, 10–25, 1973.MathSciNetzbMATHGoogle Scholar
  5. [5]
    V. Beneš: Exact finite dimensional filters for certain diffusions with nonlinear drift, Stochastics 5, 65–92, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Bensoussan: Filtrage optimal des systèmes linéaires, Dunod 1971.Google Scholar
  7. [7]
    A. Bensoussan: On some approximation techniques in nonlinear filtering, in Stochastic Differential Systems, Stochastic Control and Applications (Minneapolis 1986), Springer 1988.Google Scholar
  8. [8]
    A. Bensoussan: Stochastic control of partially observable systems, Cambridge Univ. Press, à paraître.Google Scholar
  9. [9]
    J.M. Bismut: A generalized formula of Itô and some other properties of stochastic flows, Z. Wahrsch. 55, 331–350, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.M. Bismut: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions, Z. Wahrschein. 56, 469–505, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.M. Bismut, D. Michel: Diffusions conditionnelles, J. Funct. Anal. 44, 174–211, 1981 et 45, 274–282, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B.Z. Bobrovsky, M. Zakai: Asymptotic a priori estimates for the error in the nonlinear filtering problem, IEEE Trans. Inform. Th. 28, 371–376, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Bouleau, F. Hirsch: Propriétés d'absolue continuité dans les espaces de Direchlet et applications aux équations différentielles stochastiques, in Séminaire de Probabilités XX, Lecture Notes in Math. 1204, 131–161, Springer 1986.MathSciNetCrossRefGoogle Scholar
  14. [14]
    R.W. Brockett: Remarks on finite dimensional estimation, in Analyse des Systèmes, Astéristique 75–76, SMF 1980.Google Scholar
  15. [15]
    F. Campillo, F. Le Gland: MLE for partially observed diffusions: direct maximization vs. the EM algorithm, Stoch. Proc. and their Applic., à paraître.Google Scholar
  16. [16]
    F. Campillo, F. Le Gland: Application du filtrage non linéaire en trajectographie passive, 12eme colloque GRETSI, 1989.Google Scholar
  17. [17]
    M. Chaleyat-Maurel, D. Michel: Des résultats de non existence de filtre de dimension finie, Stochastics 13, 83–102, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Chaleyat-Maurel, D. Michel: Hypoellipticity theorems and conditional laws, Zeit. Wahr. Verw. Geb. 65, 573–597, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Chaleyat-Maurel, D. Michel: Une propriété de continuité en filtrage non linéaire, Stochastics 19, 11–40, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Chaleyat-Maurel, D. Michel, E. Pardoux: Un théorème d'unicité pour l'équation de Zakai, Stochastics, 29, 1–13, 1990.zbMATHGoogle Scholar
  21. [21]
    M. Davis: Nonlinear filtering and stochastic flows, Proc. Int. Cong. Math. Berkeley 1986.Google Scholar
  22. [22]
    M. Davis, M. Spathopoulos: Pathwise nonlinear filtering for nondegenerate diffusions with noise correlation, Siam. J. Control 25, 260–278, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Doss: Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré, Prob. et Stat., 13, 99–125, 1977.MathSciNetzbMATHGoogle Scholar
  24. [24]
    S.D. Eidel'man: Parabolic Systems, North Holland 1969.Google Scholar
  25. [25]
    N. El Karoui, D. Hu Nguyen, M. Jeanblanc-Picqué: Existence of an optimal Markovian filter for the control under partial observations, Siam J. Control 26, 1025–1061, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Ethier, T. Kurtz: Markov Processes: Characterization and convergence, J. Wiley 1986.Google Scholar
  27. [27]
    W. Fleming, E. Pardoux: Optimal control for partially observed diffusions, Siam J. Control 20, 261–285, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    W. Fleming, E. Pardoux: Piecewise monotone filtering with small observation noise Siam J. Control 27, 1156–1181, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    W. Fleming, D. Ji, E. Pardoux: Piecewise linear filtering with small observation noise, in Analysis and Optimization of Systems, Lecture Notes in Control and Info.-Scie. 111, Springer 1988.Google Scholar
  30. [30]
    P. Florchinger: Filtrage non linéaire avec bruits corrélés et observation non bornée. Etude numérique de l'équation de Zakai, Thèse, Univ. de Metz, 1989.Google Scholar
  31. [31]
    M. Fujisaki, G. Kallianpur, H. Kunita: Stochastic differential equations for the nonlinear filtering problem, Osaka J. Math. 9, 19–40, 1972.MathSciNetzbMATHGoogle Scholar
  32. [32]
    I. Gyöngy: Stochastic equations with respect to semimartingales III, Stochastics 7, 231–254, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    U. Haussmann, E. Pardoux: A conditionnally almost linear filtering problem with non Gaussian initial condition, Stochastics 23, 241–275, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Hazewinkel, S.I. Marcus: On Lie algebras and finite dimensional filters Stochastics 7, 29–62, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Hazewinkel, S.I. Marcus, H.J. Sussmann: Non existence of exact finite dimensional filters for conditional statistics of the cubic sensor problem, Systems and Control Letters 5, 331–340, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Hazewinkel, J.C. Willems (eds.): Stochastic systems: The mathematics of filtering and identification and applications, D. Reidel 1981.Google Scholar
  37. [37]
    O. Hijab: Finite dimensional cansal functionals of Brownian motions, in Non linear stochastic problems, Proc. Nato. Asi Conf. on Nonlin. Stoch. Problems, D. Reidel 1982.Google Scholar
  38. [38]
    L. Hörmander: Hypoelliptic second order differential equations, Acta Math. 119, 147–171, 1967.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Ikeda, S. Watanabe: Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha 1981.Google Scholar
  40. [40]
    A. Isidori: Non linear Control Systems: an Introduction, Lecture Notes in Control and Info. Scie. 72, Springer 1985.Google Scholar
  41. [41]
    G. Kallianpur: Stochastic filtering Theory, Springer 1980.Google Scholar
  42. [42]
    G. Kallianpur, R.L. Karandikar: White noise theory of prediction, filtering and smoothing, Stochastics Monograph 3, Gordon and Breach 1988.Google Scholar
  43. [43]
    R. Katzur, B.Z. Bobrovsky, Z. Schuss: Asymptotic analysis of the optimal filtering problem for one-dimensional diffusions measured in a low noise channel, Siam J. Appl. Math. 44, 591–604 and 1176–1191, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    N.V. Krylov, B.L. Rozovskii: On conditionnal distributions of diffusion processes, Math. USSR Izvestija 12, 1978.Google Scholar
  45. [45]
    N.V. Krylov, B.L. Rozovskii: Stochastic evolution equations, J. of Soviet Math. 16, 1233–1277, 1981.CrossRefzbMATHGoogle Scholar
  46. [46]
    H. Kunita: Asymptotic behaviour of the non linear filtering errors of Markov processes, J. Multivariate Anal. 1, 365–393, 1971.MathSciNetCrossRefGoogle Scholar
  47. [47]
    H. Kunita: Cauchy problem for stochastic partial differential equation arising in non linear filtering theory, Systems and Control Letters 1, 37–41, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    H. Kunita: Densities of a measure valued process governed by a stochastic partial differential equation, Systems and Control Letters 1, 100–104, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    H. Kunita: Stochastic differential equations and stochastic flows of diffeomorphisms, in Ecole d'été de Probabilités de St-Flour XII, Lecture Notes in Math. 1097, Springer 1984.Google Scholar
  50. [50]
    T. Kurtz, D. Ocone: Unique characterization of conditional distributions in non linear filtering, Annals of Prob. 16, 80–107, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    H. Kushner, H. Huang: Approximate and limit results for nonlinear filters with wide bandwidth observation noise, Stochastics 16, 65–96, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Kusuoka, D.W. Stroock: The partial Malliavin calculus and its application to non linear filtering, Stochastics 12, 83–142, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    F. Le Gland: Estimation de paramètres dans les processus stochastiques en observation incomplète, Thèse, Univ. Paris-Dauphine, 1981.Google Scholar
  54. [54]
    J. Lévine: Finite dimensional realizations of stochastic PDE's and application to filtering, à paraître.Google Scholar
  55. [55]
    R.S. Liptser, A.N. Shiryayev: Statistics of random processes Vol. I, II, Springer 1977.Google Scholar
  56. [56]
    [56] C. Lobry: Bases mathémathiques de la théorie des systèmes asservis non linéaires, Notes polycopiées, Univ. de Bordeaux I, 1976.Google Scholar
  57. [57]
    A. Makowski: Filtering formulae for partially observed linear systems with non Gaussian initial conditions, Stochastics, 16, 1–24, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    S.I. Marcus: Algebraic and geometric methods in nonlinear filtering, Siam J. Control 22, 817–844, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    D. Michel: Conditional laws and Hörmander's condition, in Proc. Taniguchi Symposium on Stochastic Analysis, K. Itô ed., 387–408, North-Holland 1983.Google Scholar
  60. [60]
    D. Michel, E. Pardoux: An introduction to Malliavin's calculus and some of its applications, à paraître.Google Scholar
  61. [61]
    P. Milheiro de Oliveira: Filtres approchés pour un problème de filtrage non linéaire avec petit bruit d'observation, Rapport INRIA, à paraître.Google Scholar
  62. [62]
    S. K. Mitter: Filtering theory and quantum fields, in Analyse des systèmes, loc. cit.Google Scholar
  63. [63]
    S.K. Mitter, A. Moro (eds.): Nonlinear filtering and stochastic control, Lecture Notes in Math. 972, Springer 1983.Google Scholar
  64. [64]
    J. Norris: Sinplified Malliavin Calculus, in Séminaire de Probabilité XX loc. cit., 101–130.Google Scholar
  65. [65]
    D. Ocone: Stochastic calculus of variations for stochastic partial differential equations J. Funct. Anal. 79, 288–331, 1966.MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    D. Ocone, E. Pardoux: A Lie-algebraic criterion for non existence of finite dimensionally computable filters, in Stochastic Partial Differential Equations and Applications II, G. Da Prato and L. Tubaro eds., Lecture Notes in Math. 1390, Springer 1989.Google Scholar
  67. [67]
    D. Ocone, E. Pardoux: Equations for the nonlinear smoothing problem in the general case, in Proc. 3d Trento Conf. on SPDEs, G. Da Prato & L. Tubaro eds., Lecture Notes in Math. Springer, à paraître.Google Scholar
  68. [68]
    E. Pardoux: Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3, 127–167, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    E. Pardoux: Equations du filtrage non linéaire, de la prédiction et du lissage, Stochastics 6, 193–231, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    E. Pardoux: Equations of nonlinear filtering, and application to stochastic control with partial observation, in Non linear filtering and stochastic control, loc. cit., 208–248.Google Scholar
  71. [71]
    E. Pardoux: Equations du lissage non linéaire, in Filtering and control of random processes, H. Korezioglu, G. Mazziotto & S. Szpirglas eds., Lecture Notes in Control and Info. Scie. 61, 206–218 Springer 1984.Google Scholar
  72. [72]
    E. Pardoux: Sur les équations aux dérivées partielles stochastiques de type parabolique, in Colloque en l'honneur de L. Schwartz Vol. 2, Astérisque 132, 71–87, SMF 1985.Google Scholar
  73. [73]
    J. Picard: Non linear filtering of one-dimensional diffusions in the case of a high signalto-noise ration, Siam J. Appl. Math. 46, 1098–1125, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    J. Picard: Filtrage de diffusions vectorielles faiblement bruitées, in Analysis and Optimization of Systems, Lecture Notes in Control and Info. Scie. 83, Springer 1986.Google Scholar
  75. [75]
    J. Picard: Nonlinear filtering and smoothing with high signal-to-noise ratio, in Stochastic Processes in Physics and Engineering, D. Reidel 1986.Google Scholar
  76. [76]
    J. Picard: Asymptotic study of estimation problems with small observation noise, in Stochastic Modelling and Filtering, Lecture Notes in Control and Info. Scie. 91, Springer 1987.Google Scholar
  77. [77]
    J. Picard: Efficiency of the extended Kalman filter for nonlinear systems with small noise, à paraître.Google Scholar
  78. [78]
    M. Pontier, C. Stricker, J. Szpirglas: Sur le théorème de représentation par rapport à l'innovation, in Séminaire de Probabilité XX, loc. city., 34–39.Google Scholar
  79. [79]
    M.C. Roubaud: Filtrage linéaire par morceaux avec petit bruit d'observation, à paraître.Google Scholar
  80. [80]
    B. Rozovski: Evolution stochastic systems, D. Reidel 1990.Google Scholar
  81. [81]
    D.W. Stroock: Some applications of stochastic calculus to partial differential equations, in Ecole d'Eté de Probabilités de St Flour XI, Lecture Notes in Math. 976, 267–382, Springer 1983.Google Scholar
  82. [82]
    H. Sussmann: On the gap between deterministic and stochastic ordinary differential equations, Ann. of Prob. 6, 19–41, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    H. Sussmann: On the spatial differential equations of nonlinear filtering, in Nonlinear partial differential equations and their applications, Collège de France seminar 5, 336–361, Research Notes in Math. 93, Pitman 1983.Google Scholar
  84. [84]
    J. Szpirglas: Sur l'équivalence d'équations différentielles stochastiques à valeurs mesures intervenant dans le filtrage markovien non linéaire, Ann. Institut Henri Poincaré 14, 33–59, 1978.MathSciNetzbMATHGoogle Scholar
  85. [85]
    J. Walsh: An introduction to Stochastic Partial Differential Equations, in Ecole d'été de Probabilité de St-Flour XIV, Lecture Notes in Math. 1180, 265–439, Springer 1986.Google Scholar
  86. [86]
    M. Yor: Sur la théorie du filtrage, in Ecole d'été de Probabilité de St-Flour IX, Lecture Notes in Math. 876, 239–280, Springer 1981.Google Scholar
  87. [87]
    M. Zakai: On the optimal filtering of diffusion processes, Zeit. Wahr. Verw. Geb. 11, 230–243, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    M. Zakai: The Malliavin Calculus, Acta Applicandae Mat. 3, 175–207, 1985.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Etienne Pardoux

There are no affiliations available

Personalised recommendations