Skip to main content

Nonsmooth analysis and parametric optimization

  • Conference paper
  • First Online:
Book cover Methods of Nonconvex Analysis

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1446))

Abstract

In an optimization problem that depends on parameters, an important issue is the effect that perturbations of the parameters can have on solutions to the problem and their associated multipliers. Under quite broad conditions the possibly multi-valued mapping that gives these elements in terms of the parameters turns out to enjoy a property of “proto-differentiability.” Generalized derivatives can then be calculated by solving an auxiliary optimization problem with auxiliary parameters. This is constructed from the original problem by taking second-order epi-derivatives of an essential objective function.

This work was supported in part by the National Science Foundation at the University of Washington, Seattle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. H. Clarke, Nonsmooth Analysis and Optimization, Wiley, 1983.

    Google Scholar 

  2. R. T. Rockafellar, “Generalized directional derivatives and subgradients of nonconvex functions,” Canadian J. Math. 32 (1980), 157–180.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. T. Rockafellar, “Proto-differentiability of set-valued mappings and its applications in optimization,” Annales de l'Institut H. Poincaré, Analyse Non Linéaire (1989).

    Google Scholar 

  4. R. T. Rockafellar, “First-and second-order epi-differentiability in nonlinear programming,” Trans. Amer. Math. Soc. 307 (1988), 75–107.

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Mosco, “Convergence of convex sets and solutions to variational inequalities,” Advances in Math. 3 (1969), 510–585.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Attouch and R. Wets, “Quantitative stability of variational systems: I. The epigraphical distance,” preprint.

    Google Scholar 

  7. J. Beer and J. Borwein, “Mosco convergence and duality,” preprint.

    Google Scholar 

  8. R. Wijsman, “Convergence of sequences of convex sets, cones, and functions, II,” Trans. Amer. Math. Soc. 123 (1966), 32–45.

    Article  MathSciNet  MATH  Google Scholar 

  9. U. Mosco, “On the continuity of the Young-Fenchel transform,” J. Math. Anal. Appl. 35 (1971), 518–535.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Shapiro, “Second-order sensitivity analysis and asymptotic theory of parameterized nonlinear programs,” Math. Prog. 33 (1985), 280–299.

    Article  MATH  Google Scholar 

  11. J.-P. Penot, “A characterization of tangential regularity,” Nonlin. Analysis: Theory, Meth. Appl. 5 (1981), 625–643.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. S. Treiman, “Characterization of Clarke's tangent and normal cones in finite and infinite dimensions,” Nonlinear Analysis: Theory Meth. Appl. 7 (1983), 771–783.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. T. Rockafellar, “Directionally Lipschitzian functions and subdifferential calculus,” Proc. London Math. Soc. 39 (1979), 331–355.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Borwein and D. Ward, “Nonsmooth calculus in finite dimensions,” SIAM J. Control Opt. 25 (1987), 1312–1340.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. T. Rockafellar, “Extensions of subgradient calculus with applications to optimization,” Nonlin. Anal.: Theory Math. Appl. 9 (1985), 665–698.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. T. Rockafellar, “Existence and duality theorems for convex problems of Bolza,” Trans. Amer. Math. Soc. 159 (1971), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. H. Clarke, “A new approach to Lagrange multipliers,” Math. of Oper. Research 1 (1976), 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. H. Clarke, “The generalized problem of Bolza,” SIAM J. Control Opt. 14 (1976), 682–699.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. T. Rockafellar, “Duality and stability in extremum problems involving convex functions,” Pacific J. Math. 21 (1967), 167–187.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. T. Rockafellar, “Conjugate convex functions in optimal control and the calculus of variations,” J. Math. Anal. Appl. 32 (1970), 174–222.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. T. Rockafellar, Conjugate Duality and Optimization, SIAM Publications, 1974.

    Google Scholar 

  22. R. Poliquin, Proto-differentiation and Integration of Proximal Subgradients, dissertation, University of Washington, 1988.

    Google Scholar 

  23. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, 1984.

    Google Scholar 

  24. F. Mignot, “Côntrole dans les inéquations variationelles elliptiques,” J. Functional Analysis 22 (1976), 130–185.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Thibault, “Tangent cones and quasi-interiorly tangent cones to multifunctions,” Trans. Amer. Math. Soc. 277 (1983), 601–621.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Shapiro, “Directional differentiability of metric projections onto moving sets at boundary points,” J. Math. Anal. Appl. 131 (1988).

    Google Scholar 

  27. A. Shapiro, “On concepts of directional differentiability,” preprint.

    Google Scholar 

  28. S. M. Robinson, “Local structure of feasible sets in nonlinear programming, part III: stability and sensitivity,” Math. Programming Study 30 (1987), 45–66.

    Article  MATH  Google Scholar 

  29. S. M. Robinson, “An implicit function theorem for B-differentiable functions,” Working Paper WP-88-67, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1988.

    Google Scholar 

  30. R. T. Rockafellar, “Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives,” Math. of Oper. Research (1989).

    Google Scholar 

  31. C. Do, Second-order Nonsmooth Analysis and Sensitivity in Optimization Problems Involving Convex Integral Functionals, dissertation, University of Washington, 1989.

    Google Scholar 

  32. R. T. Rockafellar, “Generalized second derivatives of convex functions and saddle functions,” preprint.

    Google Scholar 

  33. H. Attouch, “Convergence de fonctions convexes, des sous-différentials et semi-groupes associés,” C.R. Acad. Sci. Paris 284 (1977), 539–542.

    MathSciNet  MATH  Google Scholar 

  34. R. Poliquin, “Proto-differentiation of subgradient set-valued mappings,” Canadian J. Math., to appear.

    Google Scholar 

  35. R. Poliquin and R. T. Rockafellar, “Proto-derivatives of solution mappings in parametric optimization,” preprint.

    Google Scholar 

  36. A. J. King and R. T. Rockafellar, “Sensitivity analysis for nonsmooth generalized equations,” preprint.

    Google Scholar 

  37. R. T. Rockafellar, “Perturbations of generalized Kuhn-Tucker points in finite-dimensional optimization,” Nonsmooth Optimization and Related Topics (F. Giannessi, ed.), Plenum, 1989.

    Google Scholar 

Download references

Authors

Editor information

Arrigo Cellina

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Rockafellar, R.T. (1990). Nonsmooth analysis and parametric optimization. In: Cellina, A. (eds) Methods of Nonconvex Analysis. Lecture Notes in Mathematics, vol 1446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084934

Download citation

  • DOI: https://doi.org/10.1007/BFb0084934

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53120-3

  • Online ISBN: 978-3-540-46715-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics