Advertisement

A note on the mod 2 cohomology of SL(ℤ)

  • Dominique Arlettaz
Other
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Arlettaz: Chern-Klassen von ganzzahligen und rationalen Darstellungen diskreter Gruppen, Math. Z. 187 (1984), 49–60.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D. Arlettaz: On the algebraic K-theory of ℤ, J. Pure Appl. Algebra 51 (1988), 53–64.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Arlettaz: Torsion classes in the cohomology of congruence subgroups, Math. Proc. Cambridge Philos. Soc. 105 (1989), 241–248.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Bökstedt: The rational homotopy type of ΩWh Diff(*), in Algebraic Topology Aarhus 1982, Lecture Notes in Math. 1051 (Springer 1984), 25–37.CrossRefGoogle Scholar
  5. [5]
    A. Borel: Cohomologie réelle stable de groupes S-arithmétiques classiques, C.R. Acad. Sci. Paris Sér. A 274 (1972), 1700–1702.MathSciNetzbMATHGoogle Scholar
  6. [6]
    W.G. Dwyer and E.M. Friedlander: Conjectural calculations of general linear group homology, in Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Contemp. Math. 55 Part I (1986), 135–147.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Quillen: On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552–586.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Dominique Arlettaz
    • 1
  1. 1.Institut de mathématiquesUniversité de LausanneLausanneSwitzerland

Personalised recommendations