Advertisement

Semicontractible link maps and their suspensions

  • Ulrich Koschorke
Geometry Of Manifolds
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D]
    U. Dahlmeier, “Gewisse Verschlingungen und ihre Jin-Suspensionen,” Diplomarbeit, Universitaet Siegen, 1989.Google Scholar
  2. [FR]
    R. Fenn and D. Rolfsen, Spheres may link homotopically in 4-space, J. London Math. Soc. (2) 34 (1986), 177–184.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [J]
    G. T. Jin, Invaraints of two-component links, Thesis, Brandeis University (1988).Google Scholar
  4. [Ki1]
    P. Kirk, Link maps in the 4-sphere, Proc. Siegen Topology Symp. LNiM 1350, Springer Verlag (1988).Google Scholar
  5. [Ki2]
    ___, Link homotopy with one codimension 2 component, Trans. AMS, to appear.Google Scholar
  6. [Ko1]
    U. Koschorke, Link maps and the geometry of their invariants, Manuscr. Math. 61 (1988), 383–415.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Ko2]
    _____, Multiple point invariants of link maps, Proc. Second Siegen Topology Symposium 1987, Springer LNiM 1350 (1988), 44–86.Google Scholar
  8. [Ko3]
    _____, On link maps and their homotopy classification, Math. Annalen, to appear.Google Scholar
  9. [Ko4]
    _____, Link homotopy with many components, Topology, to appear.Google Scholar
  10. [M]
    J. Milnor, Link groups, Ann. of Math. 59 (1954), 177–195.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [P]
    C. D. Papakyriakopoulos, Dehn's lemma and asphericity of knots, Ann. of Math. 66 (1957), 1–26.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [R]
    D. Rolfsen, “Knots and Links,” Math. Lect. Series 7, Publish or Perish, 1976.Google Scholar
  13. [S]
    G. P. Scott, Homotopy links, Abh. Math. Sem. Hamburg 32 (1968), 186–190.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Ulrich Koschorke
    • 1
    • 2
  1. 1.Mathematical Sciences Research InstituteBerkeley
  2. 2.Mathematik V, Universität GHSiegen

Personalised recommendations