Advertisement

On conic spaces

  • Giora Dula
Survey Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)

Abstract

In this paper, the notions of conic spaces, Thom spaces, Hopf Invariants and construction X k are surveyed.

Keywords

Homotopy Group Mapping Cone Homotopy Equivalent Smash Product Conic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada.
    J.F. Adams, On the Non-Existence of Elements with Hopf Invariant One, Ann. of Math. 72 (1960), 20–104.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Ade.
    J. Adem, The Iteration of Steenrod Squares in Algebraic Topology, Proc. Natl. Acad. Sci. 38 (1952), 720–726.MathSciNetCrossRefzbMATHGoogle Scholar
  3. At.
    M.F. Atiyah, Thom Complexes, Proc. Lond. Math. Soc. 11 (1961), 291–310.MathSciNetCrossRefzbMATHGoogle Scholar
  4. BB.
    W.D. Barcus and M.G. Barratt, On the Homotopy Classification of the Extensions of a Fixed Map, Trans. Amet Math. Soc. 88 (1957), 57–74.MathSciNetCrossRefzbMATHGoogle Scholar
  5. B1.
    M.G. Barratt, Track Groups I,II. Proc. Lond. Math. Soc. 5 (1955), 71–106, 285–329.MathSciNetCrossRefzbMATHGoogle Scholar
  6. B2.
    ____, Higher Hopf Invariants, Mimeographed notes, University of Chicago.Google Scholar
  7. B3.
    ____, Remark on James invariants, “Conference on Algebraic Topology,” Aarhus University 1962, pp. 102–103.Google Scholar
  8. B4.
    ____, Spaces of Finite Characteristic, Quat. Jour. of Math. 11 (1960), 124–136.MathSciNetzbMATHGoogle Scholar
  9. B5.
    ____, On the Construction X k, Unpublished.Google Scholar
  10. B6.
    ____, Twisted Lie Algebras, “Geometric applications of homotopy theory II (Northwestern 1977) M.G.Barratt and M.E.Mahowald edtrs,” Lect. Notes in Math. 658, pp. 9–15.Google Scholar
  11. B7.
    ____, Taming Hopf Invariants, “Combinatorial methods in topology and algebraic geometry (Rochester 1978) J.R.Harper and R.Mandelbaum edtrs,” Contemporary mathematics, Amer. Math. Soc. vol 44, pp. 201–205.Google Scholar
  12. BJM.
    M.G.Barratt, J.D.S.Jones and M.E.Mahowald, The Kervaire Invariant and the Hopf Invariant, “Algebraic Topology Proceedings(Seattle 1985) H.Miller and D.C.Ravenel edtrs,” Lect. Notes in Math. 1286, pp. 135–173.Google Scholar
  13. BH.
    I. Berstein and P.J. Hilton, On Suspensions and Comultiplications, Topology 2 (1963), 73–82.MathSciNetCrossRefzbMATHGoogle Scholar
  14. BS.
    J.M. Boardman and B. Steer, On Hopf Invariants, Comm. Math. Helv. 42 (1967), 180–221.MathSciNetCrossRefzbMATHGoogle Scholar
  15. CDGM.
    F.R. Cohen D.M. Davis P.G. Goerss and M.E. Mahowald, Integral Brown-Gitler spectra, Proc. Amer. Math. Soc. 103 (1988), 1299–1304.MathSciNetCrossRefzbMATHGoogle Scholar
  16. DHS.
    E.S. Devinatz M.J. Hopkins and J.H. Smith, Nilpotence and Stable Homotopy theory I, Ann. of Math. 128 (1988), 207–241.MathSciNetCrossRefzbMATHGoogle Scholar
  17. D.
    G.Dula, The Conic Structure of Thom Spaces, Thesis, Northwestern University, Aug. 1988.Google Scholar
  18. FHLT.
    Y. Félix, S. Halperin, J.M. Lemaire and J.C. Thomas, Mod p Loop Spaces Homology, Inv. Math. 95 (1989), 247–262.CrossRefzbMATHGoogle Scholar
  19. Ga.
    T. Ganea, On the Homotopy Suspension, Comm. Math. Helv. 43 (1968), 225–234.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Gr1.
    B.Gray, Ring Spectra and the James Construction, Mimeographed Notes, 1968.Google Scholar
  21. Gr2.
    ____, Operations and Two Cell Complexes, “Conference on Algebraic Topology, V.Gugenheim edtr,” University of Illinois at Chicago Circle,1968, pp. 61–68.Google Scholar
  22. Gr3.
    ____, Ring Spectra, “Conference on Algebraic Topology,” Aarhus University 1970, pp. 143–153.Google Scholar
  23. Ha1.
    C.H.Hanks, On the Hopf Construction Associated to a Composition, Thesis, Northwestern University. Aug. 1975.Google Scholar
  24. Ha2.
    ____, On the Hopf Construction Associated with a Composition, “Geometric Applications of Homotopy Theory II, M.G. Barratt and M.E.Mahowald edtrs,” Lect. Notes in Math. 658, pp. 191–205.Google Scholar
  25. HS.
    R.P. Held and D.K. Sjerve, On the Homotopy Properties of Thom Complexes, Math. Zeit. 135 (1974), 315–323.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Hi1.
    P.J. Hilton, On the Homotopy Groups of the Union of Spheres, Jour. Lond. Math. Soc. 30 (1955), 154–172.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Hi2.
    ____, “Homotopy Theory and Duality,” Notes in Mathematics and its Applications, Gordon and Breach, 1965.Google Scholar
  28. Ho1.
    H. Hopf, Über die Abbildungen der Dreidimensionalen Sphare auf die Kugelflache, Math. Ann. 104 (1931), 639–665.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Ho2.
    , Über die Abbildungen von Spharen auf Spharen Niedriger dimension, Fund. Math. 25 (1935), 427–440.zbMATHGoogle Scholar
  30. Hop.
    M.J.Hopkins, Thesis, Northwestern University, Aug. 1985.Google Scholar
  31. J1.
    I.M. James, Reduced Product Spaces, Ann. of Math. 62 (1955), 170–197.MathSciNetCrossRefzbMATHGoogle Scholar
  32. J2.
    ____, On the Suspension Triad, Ann. of Math. 63 (1956), 191–247.MathSciNetCrossRefzbMATHGoogle Scholar
  33. K.
    W.Komornicki, Multiplication in two-cell spectra, “Geometric Applications of Homotopy Theory II, M.G.Barratt and M.E.Mahowald edtrs,” Lect. Notes in Math. 658, pp. 215–223.Google Scholar
  34. KS.
    U. Koschorke and B. Sanderson, Self intersections and higer Hopf Invariants, Topology (1978), 283–290.Google Scholar
  35. Mah.
    M.E. Mahowald, Ring Spectra which are Thom Complexes, Duke Math. Jour. 46 (1979), 549–559.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Mar1.
    H.J. Marcum, Fibrations over double mapping cylinders, Ill. jour. of Math. 24 (1980), 344–358.MathSciNetzbMATHGoogle Scholar
  37. Mar2.
    ____, Homotopy decompositions for product spaces, “Atas do Décimo Primero Colóquío Brasileiro de Matemática,” IMPA, Rio de Janeiro, 1978, pp. 665–680.Google Scholar
  38. Mar3.
    ____, Functional Properties of Hopf Invariant, to appear in Quaestiones Mathematicae.Google Scholar
  39. May1.
    J.P. May, “The Geometry of Iterated Loop Spaces,” Springer Verlag, Lecture Notes in Mathematics, 1972.Google Scholar
  40. May2.
    ____, The dual Whitehead theorems, “Topological topics, article presented to P.J.Hilton on his sixtieth birthday,” London Mathematical Society, Lecture Notes in Mathematics, I.M.James edtr., 1983, pp. 46–64.Google Scholar
  41. Mi1.
    J.W.Milnor, On the Construction FK, Mimeographed Lecture Notes, Princeton University, 1956.Google Scholar
  42. Mi2.
    ____. Construction of Universal Bundles II, Ann. of Math. 63 (1956), 430–436.MathSciNetCrossRefzbMATHGoogle Scholar
  43. P.
    G.J. Porter, Higher Order Whitehead Products, Topology 3 (1965), 123–165.MathSciNetCrossRefzbMATHGoogle Scholar
  44. R.
    D.C. Ravenel, Localization with Respect to Certain Periodic Homology Theories, Amer. Jour. of Math. 106 (1984) 351–414.MathSciNetCrossRefzbMATHGoogle Scholar
  45. S.
    N.E. Steenrod, Cohomology Invariants of Mappings, Ann. of Math. 50 (1949), 954–988.MathSciNetCrossRefzbMATHGoogle Scholar
  46. T.
    H.Toda, “Composition Methods in the Homotopy Groups of Spheres,” Annalls of Math. Studies, Princeton University, 1962.Google Scholar
  47. Wlk.
    M. Walker, Homotopy Pullbacks and the Hopf Invariant, Jour. Lond. Math. Soc. 19 (1979), 153–158.MathSciNetCrossRefzbMATHGoogle Scholar
  48. Wll.
    C.T.C. Wall, Poincaré Complexes I, Ann. of Math. 86 (1967), 213–245.MathSciNetCrossRefzbMATHGoogle Scholar
  49. WG1.
    G.W. Whitehead, On the Homotopy Groups of Spheres and Rotation Groups, Ann. of Math. 43 (1942), 634–640.MathSciNetCrossRefzbMATHGoogle Scholar
  50. WG2.
    ____, A Generalization of the Hopf Invariant, Ann. of Math. 51 (1950), 192–237.MathSciNetCrossRefzbMATHGoogle Scholar
  51. WG3.
    ____, On the Freüdenthal Theorems, Ann. of Math. 57 (1953), 209–228.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Giora Dula
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest Lafayette

Personalised recommendations