Keywords
- Zeta Function
- Abelian Variety
- Galois Cohomology
- Main Conjecture
- Ideal Class Group
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
Bibliography
Beilinson, A., Higher regulators and values of L-functions, J. Soviet Math. 30 (1985) 2036–2070.
Beilinson, A., Polylogarithm and cyclotomic elements, preprint.
Bloch, S., Lectures on algebraic cycles, Duke Univ. Math. Series (1980).
Bloch, S. and Kato, K., L-functions and Tamagawa numbers motives, in The Grothendieck Festscherift, Vol. 1 (1980) 334–400.
Borel, A., Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235–272.
Coates, J. and Perrin-Riou, B., On p-adic L-functions attached to motives over Q, in Advanced Studies in Pure Math. 17 (1989) 23–54.
Coates J. and Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977) 223–251.
Coleman, R., Division values in local fields, Inv. Math. 53 (1979) 91–116.
Damerell, R. M., L-functions of elliptic curves with complex multiplication, I. Acta Arith. 17 (1970) 287–301, II, ibid. 19 (1971) 311–317.
Deligne, P., Théorie de Hodge II, Publ. Math. IHES 40 (1972) 5–57.
Deligne, P., Théorème de finitude en cohomologie l-adique, in Lecture Notes in Math. 569 (SAG 4½), Springer (1977) 233–261.
Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., vol. 33, Part 2, AMS (1979) 313–349.
Deligne, P., La conjecture de Weil II, Publ. Math. IHES 52 (1981).
Deligne, P., Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q. Springer (1989) 79–298.
de Shalit, E., The explicit reciprocity law in local class field theory, Duke Math. J. (1986) 163–176.
de Shalit, E., Iwasawa theory of elliptic curves with complex multiplication, Academic Press (1987).
de Shalit, E., The explicit reciprocity law of Bloch and Kato, preprint.
Faltings, G., Crystalline cohomology and p-adic Galois representations, in Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins Univ. (1989) 25–80.
Fontaine, J.-M., Sur certains types de représentations p-adiques du groupe de Galois d'un corps local: construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982) 547–608.
Fontaine, J.-M., Formes différentielles et modules de Tate des variétés abeliennes sur les corps locaux, Invent. Math. 65 (1982) 379–409.
Fontaine, J.-M., Cohomologie crystalline et représentations p-adiques, in Lecture Notes in Math. 1016, Springer (1983) 86–108.
Fontaine, J.-M. and Messing, W., p-adic periods and p-adic étale cohomology, Contemporary Math. 67 (1987) 179–207.
Fontaine, J.-M. and Perrin-Riou, B., Autour des conjectures de Bloch et Kato, I. C. R. Acad. Sci. Paris, t. 313, Série I (1991) 189–196, II, ibid., 349–356, III, ibid., 421–428.
Fontaine, J.-M. and Perrin-Riou, B., Autour des conjectures de Bloch et Kato, cohomologie galoisienne et valeurs de fonctions L, preprint.
Grothendieck, A., Formule de Lefschetz et rationalité des fonctions L, in Sém. Bourbaki, vol. 1965/66, Benjamin (1966) exposé 306
Illusie, L., Cohomologie de de Rham et cohomologie étale p-adique (Sém. Bourbaki exposé 726), in Astérisque (1990) 325–374.
Jannsen, U., On the l-adic cohomology of varieties over number fields and its Galois cohomology, in Galois groups over Q, Springer (1989) 315–360.
Kato, K., The explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. Math. France 119 (1991) 397–441.
Kato, K., Iwasawa theory and p-adic Hodge theory, preprint.
Kato, K., in preparation.
Kinoshita, J., The twilight-crane (1949). (A drama basing on a Japanese legend.)
Knudsen, F. and Mumford, D., The projectivity of the moduli space of stable curves I, Math. Scand. 39, 1 (1976) 19–55.
Kolyvagin, V. A., Euler systems, The Grothendieck Festschrift, vol. 2, Birkhaüser (1990) 435–483.
Mazur, B., Notes on the étale cohomology of number fields, Ann. Sci. Ec. Norm. Sup. 6 (1973) 521–556.
Mazur, B and Wiles, A., Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179–330.
Miyazawa K. (a Japanese poet), A night on the galaxy train (written around 1924).
Quillen, D., Higher algebraic K-theory, I., in Lecture Notes in Math. 341, Springer (1973) 85–147.
Rapoport, M., Schappacher, N. and Schneider, P. (ed.), Beilinson's conjectures on special values of L-functions, Academic Press (1988).
Rubin, K., The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. math. 103 (1991) 25–68.
Serre, J.-P., Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer (1965).
Soulé, C., K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251–295.
Soulé, C., On higher p-adic regulators, in Lecture Notes in Math. 854, Springer (1981) 371–401.
Soulé, C., The rank of étale cohomology of varieties over p-adic or number fields, Comp. Math. 53 (1984) 113–131.
Soulé, C., p-adic K-theory of elliptic curves, Duke Math. J. 54 (1987) 249–269.
Tate, J., On the conjecture of Birch and Swinnerton-Dyer and a geometric analog, in Sém. Bourbaki, vol. 1965/66, Benjamin (1966) exposé 306.
Tate, J., p-divisible groups, Proceedings of a conference on local fields, Driebergen, 1966, Springer (1967) 158–183.
Washington, L. C., Introduction to cyclotomic fields, Springer (1982).
Weil, A., Elliptic functions according to Eisenstein and Kronecker, Springer (1976).
Weil, A., Number theory: An approach through history; From Hammurapi to Legendre, Birkhäuser (1983).
Wiles, A., Higher explicit reciprocity laws, Ann. Math. 107 (1978) 235–254.
Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990) 493–540.
Wolfgang, K. S., λ-rings and Adams operators in algebraic K-theory, included in [Ra], 93–102.
Artin, M. and Grothendieck, and Verdier, J. L., Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Springer (1972/73).
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer-Verlag
About this chapter
Cite this chapter
Kato, K. (1993). Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. Part I. In: Ballico, E. (eds) Arithmetic Algebraic Geometry. Lecture Notes in Mathematics, vol 1553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084729
Download citation
DOI: https://doi.org/10.1007/BFb0084729
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57110-0
Online ISBN: 978-3-540-47909-3
eBook Packages: Springer Book Archive