The mandelbrot set in a model for phase transitions

  • Heinz-Otto Peitgen
  • Peter H. Richter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1111)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Barna: Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln Algebraischer Gleichungen. II, Publicatione Mathematicae, Debrecen, 4, 384–397 (1956).MathSciNetzbMATHGoogle Scholar
  2. 2.
    H. Brolin: Invariant sets under iteration of rational functions, Arkiv för Math., 6, 103–144 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Curry, L. Garnett, D. Sullivan: On the iteration of rational functions: Computer experiments with Newton’s method, Commun. Math. Phys., 91, 267–277 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    B. Derrida, L. De Seze, C. Itzykson: Fractal structure of zeroes in hierarchical models, J. Statist. Phys. 33, 559 (1983).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Douady, J. H. Hubbard: Iteration des polynomes quadratiques complexes, CRAS Paris, 294, 123–126 (1982).MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Douady, J. H. Hubbard: On the dynamics of polynomial — like mappings, preprint, 1984.Google Scholar
  7. 7.
    A. Douady, J. H. Hubbard: Etude dynamique des polynomes complexes, Publications Mathematiques D’Orsay, 1984.Google Scholar
  8. 8.
    P. Fatou: Sur les équations fonctionnelles, Bull. Soc. Math. Fr., 47, 161–271 (1919), 48, 33–94, 208–314 (1920).MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. Grossmann: Analytic Properties of Thermodynamic Functions and Phase Transitions, in: Festkörperprobleme IX, Ed. O. Madelung Vieweg 1969.Google Scholar
  10. 10.
    M. Herman: Examples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, to appear in Bull. Soc. Math. Fr.Google Scholar
  11. 11.
    M. Herman: Are there critical points on the boundaries of singular domains? Report 14, Institut Mittag-Leffler, 1984.Google Scholar
  12. 12.
    G. Julia: Sur l’iteration des fonctions rationnelles, Journal de Math. Pure et Appl., 8, 47–245 (1918).zbMATHGoogle Scholar
  13. 13.
    B. Mandelbrot: Fractal aspects of the iteration of z→λz (1-z) for complex λ, z, Annals N.Y. Acad. Sciences, 357, 249–259 (1980).CrossRefGoogle Scholar
  14. 14.
    R. Mane, P. Sad, D. Sullivan: On the dynamics of rational maps, Ann. scient. Ec. Norm. sup., 16, 193–217 (1983).MathSciNetzbMATHGoogle Scholar
  15. 15.
    H.-O. Peitgen, M. Prüfer, P. H. Richter: Phase transitions and Julia sets, Report 118, FS "Dynamische Systeme", Universität Bremen, Mai 1984, Proceedings 5th Meeting of the UNESCO Working Group on Systems Theory ‘Lotka — Volterra Approach in Dynamic Systems’, Wartburg, Eisenach, 1984.Google Scholar
  16. 16.
    H.-O. Peitgen, P. H. Richter: Die unendliche Reise, GEO June 1984, pp. 100–124, Gruner + Jahr, Hamburg.Google Scholar
  17. 17.
    H.-O. Peitgen, D. Saupe, F. v. Haeseler: Cayley’s problem and Julia sets, The Mathematical Intelligencer, 6, (2), 11–20 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. Ruelle: Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, Volume 5, 1978, Addison-Wesley Publishing Company, Reading, Massachusetts.Google Scholar
  19. 19.
    C. L. Siegel: Iteration of analytic functions, Ann. Math., 43, 607–612 (1942).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. Smale: The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc., 4, 1–36 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    D. Sullivan: Quasi conformal homeomorphisms and dynamics I, II, III, preprint 1982–1983.Google Scholar
  22. 22.
    C. N. Yang, T. D. Lee: Statistical theory of equations of state and phase transitions. I. Theory of Condensation, Phys. Rev. 87, 404–409 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 22a.
    . II. Lattice Gas and Ising Model, Phys. Rev. 87, 410–419 (1952).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Heinz-Otto Peitgen
  • Peter H. Richter
    • 1
  1. 1.Forschungsschwerpunkt Dynamische SystemeUniversität BremenBremen 33

Personalised recommendations