Advertisement

Characterizations of the pareto distribution based on order statistics

  • Caterina Dimaki
  • Evdokia Xekalaki
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1546)

Keywords

Order Statistic Conditional Distribution Marginal Distribution Pareto Distribution Characterization Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ahsanullah, A characterization of the exponential distribution, in: Statistical Distributions in Scientific Work, D. Reidel, Dordrecht, 3 (1975), pp. 399–421.Google Scholar
  2. [2]
    M. Ahsanullah, and A. B. M. Kabir, A characterization of the Pareto distribution, Canad. Stat. J., 1 (1973), pp. 109–112.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Ahsanullah, and R. L. Houchens, A note on record values from a Pareto distribution, Pakist. Stat. J., 5 (1989), pp. 51–57.MathSciNetzbMATHGoogle Scholar
  4. [4]
    A. C. Dallas, Characterizing the Pareto and power distributions, Ann. Math. Stat., 28 (1976), pp. 491–497.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. M. Dezu, A characterization of the exponential distribution by order statistics, Ann. Math. Stat., 42 (1971), pp. 837–838.CrossRefGoogle Scholar
  6. [6]
    C. Dimaki, A Characterization and Estimation Procedures for the Continuous Pareto Distributions, Univ. Warwick Pubb., England, 1977.Google Scholar
  7. [7]
    C. Dimaki, Characterization of the Pareto Distribution, in: Proc. of the 2nd Nat. Meet. of the Greek Stat. Inst., Athens, 1988. (In Greek.)Google Scholar
  8. [8]
    C. Dimaki, Some characterization of the Pareto distribution by order statistics, in: Sci. Ann., Athens Scool Econom. Busin. Sci. Pubb., Athens, 1988.Google Scholar
  9. [9]
    T. S. Ferguson, On characterizing distributions by properies of order statistics, Sankhyá, 29 A (1967), pp. 265–278.MathSciNetzbMATHGoogle Scholar
  10. [10]
    J. Galambos, Characterization of certain populations by in independence of order statistics I, in: Statistical Distributions in Scientific Work, D. Reidel, Dordiecht, 1975.Google Scholar
  11. [11]
    Z. Govindarajulu, Characterization of the exponential and prower distribution, Scand. Actur. J., 49 (1966), pp. 132–136.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Z. Govindarajulu, Characterization of the exponential distribution using lower moments of order statistics, in: Statistical Distributions in Scientific Work, D. Reidel, Dordrecht, 3 (1975), pp. 399–421.Google Scholar
  13. [13]
    J. S. Huang, A note on order statistics from a Pareto distribution, Scand. Actur. J. 3 (1975), pp. 187–190.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G.-D. Lin, Characterization of distributions via relationships between ywo moments of order statistics, J. Stat. Plan. and Infer., 19 (1988), pp. 73–80.CrossRefGoogle Scholar
  15. [15]
    H. J. Malik, A characterization of the Pareto distribution, Scand. Aktur. J., 53 (1970), pp. 115–117.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. Panaretos, On astructure property of finite distributions, J. R. Stat. Soc., 26 B (1982), pp. 209–211.MathSciNetzbMATHGoogle Scholar
  17. [17]
    G. P. Patil and V. Seshadri, Characterization theorems for some univariate probability distributions, J. R. Stat. Soc., 26 B (1964), pp. 286–292.MathSciNetzbMATHGoogle Scholar
  18. [18]
    G. S. Rogers, An alternative proof of the characterization of the density ax b, Amer. Math. Monthly, 70 (1963), pp. 857–858.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Samanta, Characterization of Pareto's distribution and (k+1)x kk+1, Ann. Math. Stat., 36 (1965), pp. 361–362.Google Scholar
  20. [20]
    Y. H. Wang and R. C. Srivastava, A characterization of the exponential and related distributions by linear regression, Ann. Stat., 8 (1980), pp. 217–220.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Caterina Dimaki
    • 1
  • Evdokia Xekalaki
    • 1
  1. 1.Dept. of StatAthens Univ. of EconomGreece

Personalised recommendations