Skip to main content

Stochastic calculus and the continuity of local times of Lévy processes

  • Conference paper
  • First Online:
Séminaire de Probabilités XXVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1526))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. T. Barlow, Continuity of local times for Lévy processes. Z. f. Wahrsch. 69 (1985) 23–35.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. T. Barlow, Necessary and sufficient conditions for the continuity of local time of Lévy processes. Ann. Probab. 16 (1988) 1389–1427.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. T. Barlow and J. Hawkes, Application de l'entropie métrique á la continuité des temps locaux des processus de Lévy. C. R. Acad. Sci. Paris 301 (1985) 237–239.

    MathSciNet  MATH  Google Scholar 

  4. E. S. Boylan, Local times for a class of Markov processes. Illinois J. Math. 8 (1964) 19–39.

    MathSciNet  MATH  Google Scholar 

  5. C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel: Théorie des Martingales. Paris, Hermann, 1980.

    MATH  Google Scholar 

  6. R. M. Dudley, Sample functions of the Gaussian process. Ann. Probab. 1 (1973) 66–103.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. K. Getoor and H. Kesten, Continuity of local times of Markov processes. Compositio Math. 24 (1972) 277–303.

    MathSciNet  MATH  Google Scholar 

  8. H. Kesten, Hitting probabilities of single points for processes with stationary independent increments. Mem. A. M. S. 93.

    Google Scholar 

  9. M. R. Marcus and J. Rosen, Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. Preprint.

    Google Scholar 

  10. H. P. McKean, Jr., A Hölder condition for Brownian local time. J. Math. Kyoto Univ. 1–2 (1962) 195–201.

    MathSciNet  MATH  Google Scholar 

  11. P.-A. Meyer, Sur les lois de certaines fonctionelles additives: Applications aux temps locaux. Publ. Inst. Statist. Univ. Paris 15 (1966) 295–310.

    MathSciNet  MATH  Google Scholar 

  12. P. W. Millar and L. T. Tran, Unbounded local times. Z. f. Wahrsch. 30 (1974) 87–92.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Azéma Marc Yor Paul André Meyer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Bass, R., Khoshnevisan, D. (1992). Stochastic calculus and the continuity of local times of Lévy processes. In: Azéma, J., Yor, M., Meyer, P.A. (eds) Séminaire de Probabilités XXVI. Lecture Notes in Mathematics, vol 1526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084306

Download citation

  • DOI: https://doi.org/10.1007/BFb0084306

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56021-0

  • Online ISBN: 978-3-540-47342-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics