Advertisement

Etude d'une martingale remarquable

  • J. Azéma
  • M. Yor
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1372)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Azéma: Sur les fermés aléatoires. Sém. Probas XIX. Lect. Notes in Maths. 1123. Springer (1985).Google Scholar
  2. [2]
    Ph. Biane, M. Yor: Quelques précisions sur le méandre brownien. Bull. Sciences Maths, 2ème série, 112, p. 101–109 (1988).MathSciNetzbMATHGoogle Scholar
  3. [3]
    Ph. Biane, M. Yor: Valeurs principales associées aux temps locaux browniens. Bull. Sciences Maths., 2ème série, 111, p. 23–101 (1987).MathSciNetzbMATHGoogle Scholar
  4. [4]
    N. Bouleau, M. Yor: Sur la variation quadratique des temps locaux de certaines semi-martingales. C.R. Acad. Sci. Paris, t. 292 (2 Mars 1981), p. 491–494.MathSciNetzbMATHGoogle Scholar
  5. [5]
    K.L. Chung: Excursions in Brownian motion. Ark. för Math., vol. 14, p. 155–177 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Emery: On Azéma's martingales. Dans ce volume.Google Scholar
  7. [7]
    J.P. Imhof: Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. J. App. Proba. t. 21, p. 500–510 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Th. Jeulin: Application de la théorie du grossissement à l'étude des temps locaux browniens. In: "Grossissements de filtrations: exemples et applications" Lect. Notes in Maths. 1118. Springer (1985).Google Scholar
  9. [9]
    N.N. Lebedev: Special functions and their applications. Dover Publications, Inc., New-York (1972).zbMATHGoogle Scholar
  10. [10]
    P.A. Meyer: A new example of chaotic representation. A paraître dans les Proceedings du: IXth International Congress on Mathematical Physics, Swansea (July 1988).Google Scholar
  11. [11]
    S.A. Molchanov, E. Ostrovski: Symmetric stable processes as traces of degenerate diffusion processes. Theory of Prob. and its Appl. vol. XIV, no 1, p. 128–131 (1969).CrossRefzbMATHGoogle Scholar
  12. [12]
    E. Perkins: Local time is a semi-martingale. Zeitschrift für Wahr., 60, p. 79–118 (1982).MathSciNetzbMATHGoogle Scholar
  13. [13]
    J.W. Pitman: Stationary excursions. Sém. Probas. XXI. Lect. Notes in Maths. 1247. Springer (1987).Google Scholar
  14. [14]
    J.W. Pitman, M. Yor: A decomposition of Bessel bridges. Zeitschrift für Wahr, 59, p. 425–457 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Ruiz de Chavez: Le théorème de Paul Lévy pour des mesures signées. Sém. Probas XVIII. Lect. Notes in Maths 1059, p. 245–255. Springer (1984).Google Scholar
  16. [16]
    F. Spitzer: Some theorems on two-dimensional Brownian motion. Trans. Amer. Math. Soc. vol. 87, p. 187–197 (1958).MathSciNetzbMATHGoogle Scholar
  17. [17]
    C. Stricker, M. Yor: Calcul stochastique dépendant d'un paramètre. Zeitschrift für Wahr., 45, p. 109–133 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Yamada: On some representations concerning stochastic integrals. Prob. Math. Stat, vol. 4, fasc. 2, p. 153–166 (1984).MathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Yor: Sur la transformée de Hilbert des temps locaux browniens et une extension de la formule d'Itô. Sém. Probas. XVI, Lect. Notes in Maths. 920, p. 238–247, Springer (1982).Google Scholar
  20. [20]
    M. Yor: Intertwinings of Bessel processes. Technical Report. University of California, Berkeley (1988).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. Azéma
    • 1
  • M. Yor
    • 1
  1. 1.Laboratoire de ProbabilitésUniversité P. et M. CurieParis Cedex 05

Personalised recommendations