Skip to main content

Generalizations of harmonic manifolds

  • Conference paper
  • First Online:
  • 771 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1481))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besse, A.L.: Manifolds all of whose geodesics are closed. Springer-Verlag, Berlin 1978.

    Book  MATH  Google Scholar 

  2. Caddeo, R.: Riemannian manifolds on which the distance function is biharmonic. Rend. Sem. Mat. Univers. Politecn. Torino 40 (1982), 93–101.

    MathSciNet  MATH  Google Scholar 

  3. Caddeo,R., and Matzeu,P.: Riemannian manifolds with Δ2rk=0. Preprint, Universita di Cagliari 1983.

    Google Scholar 

  4. Caddeo, R., and Fais, P.: Riemannian manifolds satisfying Δ2(rk log r)=0 are locally isometric to R2 or R4. Rend. Sem. Fac. Sci. Univ. Cagliari 55 (1985) No. 2, 29–51.

    MathSciNet  MATH  Google Scholar 

  5. Caddeo, R., and Vanhecke, L.: Does 2d2−n=0 on a Riemannian manifold imply flatness? Periodica Mat. Hung. 17 (1986), 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gray, A., and Willmore, T.J.: Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh 92A (1982), 343–363.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hadamard, J.: Lectures on Cauchy's Problem. Yale Univ. Press, New Haven 1923.

    MATH  Google Scholar 

  8. Ruse, H.S., Walker, A.G., and Willmore, T.J.: Harmonic spaces. Edizioni Cremonese, Roma 1961.

    MATH  Google Scholar 

  9. Schimming, R.: Lineare Differentialoperatoren zweiter Ordnung und die Methode der Koinzidenzwerte in der Riemannschen Geometrie. Beiträge zur Analysis 15 (1981), 77–91.

    MathSciNet  MATH  Google Scholar 

  10. Schimming, R.: Riemannian manifolds for which a power of the radius is k-harmonic. Z. f. Analysis u. ihre Anw. 4 (1985), 235–249.

    MathSciNet  MATH  Google Scholar 

  11. Schimming,R.: Harmonic differential operators. Forum Mathematicum (to appear).

    Google Scholar 

  12. Schimming, R., and Kowolik, J.: On polyharmonic Riemannian manifolds. Z. f. Analysis u. ihre Anw. 6 (1987), 331–339.

    MathSciNet  MATH  Google Scholar 

  13. Schimming, R., and Matel-Kaminska, D.: The volume problem for pseudo-Riemannian manifolds. Z. f. Analysis u. ihre Anw. 9 (1990), 3–14.

    MathSciNet  MATH  Google Scholar 

  14. Synge, J.L.: Relativity. The general theory. North-Holland Publ. Comp., Amsterdam 1960.

    MATH  Google Scholar 

  15. Vanhecke, L.: One-harmonic manifolds are harmonic. Bull. London Math. Soc. 13 (1981), 409–411.

    Article  MathSciNet  MATH  Google Scholar 

  16. Vanhecke, L.: Geometry in normal and tubular neighbourhoods. Preprint, Katholieke Univ. Leuven 1989.

    MATH  Google Scholar 

  17. Willmore, T.J.: Two-point invariant functions and k-harmonic manifolds. Rev. Roum. Math. Pures et Appl. 13 (1968), 1051–1057.

    MATH  Google Scholar 

  18. Willmore, T.J., and El Hadi, K.: k-harmonic symmetric manifolds. Rev. Roum. Math. Pures et Appl. 15 (1970), 1573–1577.

    MathSciNet  MATH  Google Scholar 

  19. Willmore, T.J.: The Euclidean Laplacian. In: Butzer, E.P., and Feher, F. (eds.): E. B. Christoffel. Birkhäuser-Verlag, Basel 1981, 508–516.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dirk Ferus Ulrich Pinkall Udo Simon Berd Wegner

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Schimming, R. (1991). Generalizations of harmonic manifolds. In: Ferus, D., Pinkall, U., Simon, U., Wegner, B. (eds) Global Differential Geometry and Global Analysis. Lecture Notes in Mathematics, vol 1481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0083645

Download citation

  • DOI: https://doi.org/10.1007/BFb0083645

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54728-0

  • Online ISBN: 978-3-540-46445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics