Advertisement

Number Theory pp 186-256 | Cite as

Arithmetic of certain algebraic surfaces over finite fields

  • Noriyuki Suwa
  • Noriko Yui
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1383)

Keywords

Fermat Surface Finite Field Elliptic Curf Abelian Variety Endomorphism Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin, M., Supersingular K3 surfaces, Ann. scient. Éc. Norm. Sup. 4e série, t. 7 (1974), pp. 543–568.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Artin, M., and Swinnerton-Dyer, P., The Tate-Šafarevič conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math. 20 (1973), pp. 279–296.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Artin, M., and Mazur, B., Formal groups arising from algebraic varieties, Ann. scient. Éc. Norm. Sup. 4e série, t. 10 (1977), pp. 87–132.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Crew, R., On torsion in the slope spectral sequence, Compositio Math. 56 (1985), pp. 79–86.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Deligne, P., Cohomologie des intersections complètes, SGA 7, exp. IX, Lecture Notes in Math. 340, Springer-Verlag (1973), pp. 401–438.Google Scholar
  6. [6]
    Ekedahl, T., Diagonal complexes and F-guage structure, Prépublication, Université de Paris-Sud (1985).Google Scholar
  7. [7]
    Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), pp. 349–366.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Gros, M., and Suwa, N., Application d'Abel-Jacobi p-adique et cycles algébriques, Duke J. Math. (1988) (to appear).Google Scholar
  9. [9]
    Honda, T., Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), pp. 83–95.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Illusie, L., Report on Crystalline Cohomology, Proc. Symp. Pure Math. Vol. XXIX (1975), pp. 459–478.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Illusie, L., Complexe de de Rham-Witt, Journée de Géometrie algébrique de Rennes, Asterisque 63, Soc. Math. France (1979), pp. 83–112.Google Scholar
  12. [12]
    Illusie, L., Finiteness, duality and Künneth theorems in the cohomology of the Rham-Witt complex, Proc. of the Japan-France conference in Algebraic Geometry, Tokyo-Kyoto, Lecture Notes in Math. 1016, Springer-Verlag (1983), pp. 20–72.Google Scholar
  13. [13]
    Illusie, L., Complexe de Re Rham-Witt et cohomologie cristalline, Ann. scient. Éc. Norm. Sup. 4e série, t. 12 (1979), pp. 501–661.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Illusie, L., and Raynaud, M., Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHES 57 (1983), pp. 73–212.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Katz, N., Slope filtrations of F-crystals, Journeé de Géometrie algébrique de Rennes, Asterisque 63, Soc. Math. France (1979), pp. 113–164.Google Scholar
  16. [16]
    Lang, W., and Nygaard, N., A short proof of the Rydakov-Šafarevič Theorem, Math. Ann. 251 (1980), pp. 171–173.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Lichtenbaum, S., Zeta-functions of varieties over finite fields at s=1, Arithmetic and Geometry I, Prog. in Math. Vol. 35, Birkhäuser (1983), pp. 173–194.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Lichtenbaum, S., Values of zeta functions at non-zero integers, Number Theory, Lecture Notes in Math. 1068, Springer-Verlag (1984), pp. 127–138.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Manin, Y., The theory of commutative formal groups over fields of finite characteristic, Russian Math. Surveys 10 (1963), pp. 1–83.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Manin, Y., Correspondences, motives and monoidal transformations, Math, USSR-Sb. 77 (1970), pp. 475–506.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Mazur, B., Frobenius and the Hodge filtration, Bull. Amer. Math. Soc. 78 (1972) pp. 653–667.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Mazur, B., and Messing. W., Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Math. 370, Springer-Verlag 1973.Google Scholar
  23. [23]
    Milne, J.S., The Tate-Šafarevič group of a constant abelian variety, Invent. Math. 5 (1968), pp. 63–84.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Milne, J.S., On a conjecture of Artin-Tate, Ann. of Math. 102 (1975), pp. 517–553.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Milne, J.S., Duality in the flat cohomology of a surface, Ann. scient. Éc. Norm. Sup. 9 (1976), pp. 171–202.MathSciNetzbMATHGoogle Scholar
  26. [26]
    Milne, J.S., Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), pp. 267–360.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Nygaard, N., Closedness of regular 1-forms on algebraic surfaces, Ann. scient. Éc. Norm. Sup. 3e serié, t. 12 (1979), pp. 33–45.MathSciNetzbMATHGoogle Scholar
  28. [28]
    Nygaard, N., Slopes of powers of Frobenius on crystalline cohomology, Ann. scient. Éc. Norm. Sup. 4e série 14 (1981), pp. 369–401.MathSciNetzbMATHGoogle Scholar
  29. [29]
    Nygaard, N., The Tate conjecture for an ordinary K3 surface over finite fields, Invent. Math. 74 (1983), pp. 213–237.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Nygaard, N. and Ogus, A., The Tate conjecture for K3 surfaces of finite height, Ann. of Math. 122 (1985), pp. 461–507.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Oort, F., Subvarieties of moduli spaces, Invent. Math. 24 (1974), pp. 95–119.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Rudakov, A. H., and Shafarevich, I. R., Inseparable morphisms of algebraic surfaces, Akad. Sc. SSSR. 40 (1976), pp. 1264–1307.MathSciNetzbMATHGoogle Scholar
  33. [33]
    Shioda, T., An example of unirational surfaces in characteristic p, Math. Ann. 211 (1974), pp. 233–236.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Shioda, T., Supersingular K3 surfaces, Algebraic Geometry, Proc. Summer School Copenhagen, 1978, Lecture Notes in Math. 732, Springer-Verlag (1979), pp. 665–591.Google Scholar
  35. [35]
    Shioda, T., On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo 28 (1982), pp. 175–184.MathSciNetGoogle Scholar
  36. [36]
    Shioda, T., An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), pp. 415–432.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Shioda, T., Some observations on Jacobi sums, Advanced Studies in Pure Math. 12, North Holland-Kinokuniya (1987), pp. 119–135.Google Scholar
  38. [38]
    Shioda, T., and Katsura, T., On Fermat varieties, Tôhoku J. Math. 31 (1979), pp. 97–115.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Suwa, N., De Rham cohomology of algebraic surfaces with q=−pa in characteristic p, Proc. of the Japan-France conference in Algebraic Geometry, Tokyo-Kyoto, Lecture Notes in Math. 1016, Springer-Verlag (1983), pp. 73–85.Google Scholar
  40. [40]
    Suwa, N., and Yui, N., Arithmetic of Fermat varieties I: Fermat motives and p-adic cohomology groups, MSRI Berkely Preprint 1988.Google Scholar
  41. [41]
    Tate, J., Algebraic cycles and poles of zeta functions, Arithmetic Algebraic Geometry, Harper & Row (1965), pp. 93–110.Google Scholar
  42. [42]
    Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), pp. 133–144.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    Tate, J., On the conjecture of Birch and Swinnerton-Dyer and a geometric analog, Dix exposés sur la cohomologie des shémas, North-Holland, Amsterdam (1968), pp. 189–214.Google Scholar
  44. [44]
    Waterhouse, W., Abelian varieties over finite fields, Ann. scient. Éc. Norm. Sup. série 4, t.2, (1969), pp. 521–560.MathSciNetzbMATHGoogle Scholar
  45. [45]
    Weil, A., Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), pp. 497–508.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Weil, A., Jacobi sums as Grössencharaktere, Trans. Amer. Math. Soc. 74 (1952), pp. 487–495.MathSciNetzbMATHGoogle Scholar
  47. [47]
    Yui, N., The arithmetic of products of two algebraic curves, J. Alg. 98, No. 1 (1986), pp. 102–142; Corrections, J. Alg. 109, No. 2 (1987), pp. 561.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Noriyuki Suwa
    • 1
  • Noriko Yui
    • 2
  1. 1.Department of MathematicsTokyo Denki UniversityTokyoJapan
  2. 2.Department of Mathematics and StatisticsQueen's UniversityKingstonCanada

Personalised recommendations