Number Theory pp 111-122 | Cite as

Recent developments in the theory of rational period functions

  • M. I. Knopp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1383)


Modular Form Eisenstein Series Cusp Form Dirichlet Series Automorphic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Choie, Rational period functions, class numbers and diophantine equations, preprint 19 pp.Google Scholar
  2. 2.
    Y. Choie, Rational period functions for the Hecke groups and real quadratic fields, preprint 47 pp.Google Scholar
  3. 3.
    M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Eichler, Grenzkreisgruppen und kettenbruchartige Algorithmen, Acta Arith. 11 (1965), 169–180.MathSciNetzbMATHGoogle Scholar
  5. 5.
    M. Eichler, Lectures on modular correspondences, Tata Institute of Fundamental Research, Bombay, 1955–56.Google Scholar
  6. 6.
    J. Hawkins, On rational period functions for the modular group, handwritten MS 113 pp.Google Scholar
  7. 7.
    J. Hawkins and M. Knopp, A Hecke correspondence theorem for automorphic integrals with rational period functions, preprint 71 pp.Google Scholar
  8. 8.
    E. Hecke, Lectures on Dirichlet series, modular functions and quadratic forms, Edwards Bros., Inc., Ann Arbor, 1938. Revised and reissued, Vandenhoeck & Ruprecht, Göttingen, 1983 (ed. B. Schoeneberg).Google Scholar
  9. 9.
    E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktional-gleichung, Math. Annalen 112 (1936), 664–699. Also, paper #33, pp. 591–626, in Mathematische Werke (ed. B. Schoeneberg), Vandenhoeck & Ruprecht, Göttingen, 1959.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Hurwitz, Grundlagen einer independenten Theorie der elliptschen Modulfunctionen und Theorie der Multiplicatorgleichungen erster Stufe, Math. Annalen 18 (1881), 528–591.CrossRefGoogle Scholar
  11. 11.
    M. Knopp, Fourier series of automorphic forms of nonnegative dimension, Illinois J. Math. 5 (1961), 18–42.MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Knopp, Rational period functions of the modular group, Duke Math. J. 45 (1978), 47–62.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Knopp, Rational period functions of the modular group II, Glasgow Math. J. 22 (1981), 185–197.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Knopp, Some new results on the Eichler cohomology of automorphic forms, Bull. Amer. Math. Soc. 80 (1974), 607–632.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    W. Kohnen and D. Zagier, Modular forms with rational periods, Chapter 9, pp. 197–249, in Modular forms (ed. R. Rankin), Halsted Press, New York, 1984.Google Scholar
  16. 16.
    D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincare series, Doctoral Dissertation, University of Wisconsin, Madison, Wis., 1968.Google Scholar
  17. 17.
    L.A. Parson, Construction of rational period functions for the modular group, in preparation.Google Scholar
  18. 18.
    L.A. Parson and K. Rosen, Automorphic integrals and rational period functions for the Hecke groups, Illinois J. Math. 28 (1984), 383–396.MathSciNetzbMATHGoogle Scholar
  19. 19.
    D. Zagier, Modular forms associated to real quadratic fields., Invent. Math. 30 (1975), 1–46.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. I. Knopp
    • 1
  1. 1.Temple UniversityPhiladelphia

Personalised recommendations