Bernoulli fields

  • Philip Feinsilver
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1396)


Hilbert Space Orthogonal Polynomial Stochastic Integral Springer Lecture Note Reduce Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AP]
    L. Accardi and K.R. Parthasarathy, Stochastic calculus on local algebras, Springer Lecture Notes in Math., 1136(1985) 9–23.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Bo]
    A. Boukas, Quantum stochastic calculus, a non-Brownian case, Ph.D. Dissertation, SIU, 1988.Google Scholar
  3. [BSW]
    C. Barnett, R. F. Streater, and I. F. Wilde, The Ito-Clifford Integral, J. Fl. Analysis 48(1982), 172–212.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [C]
    T.S. Chihara, An introduction to orthogonal polynomials, Mathematics and Applications Series, 13, Gordon and Breach, 1978.Google Scholar
  5. [E]
    M. Emery, Stabilité des solutions des équations différentielles stochastiques, application aux intégrales multiplicatives stochastiques, Z. Wahrsch. Verw. Gebiete 41(1978), 241–262.CrossRefzbMATHGoogle Scholar
  6. [F1]
    P. Feinsilver, Lie algebras and recurrence relations I, submitted to Acta Applicandae Math., 1988.Google Scholar
  7. [F2]
    P. Feinsilver, Some classes of orthogonal polynomials associated with martingales, Proceedings of the AMS. 98, 2(1986), 298–302.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [F3]
    P. Feinsilver, Bernoulli systems in several variables, Conference Proceedings, Probability Measures on Groups, Springer Lecture Notes, Vol. 1064 (1984), 86–98.MathSciNetzbMATHGoogle Scholar
  9. [F4]
    P. Feinsilver, Canonical representation of the Bernoulli process, Conference Proceedings, Probability Measures on Groups, Oberwolfach. Germany, Springer Lecture Notes, Vol. 928, (1982), 90–95.MathSciNetGoogle Scholar
  10. [F5]
    P. Feinsilver, Special functions, probability semigroups, and Hamiltonian flows, Lecture Notes in Math., 696, 1978.Google Scholar
  11. [F6]
    P. Feinsilver, Operator calculus, Pacific J. Mathematics, Vol. 78, No. 1 (1978), 95–116.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [G]
    A. Guichardet, Symmetric Hilbert spaces and related topics, Lect. Notes in Math., 261, Springer-Verlag, 1972.Google Scholar
  13. [M]
    J. Meixner, Orthogonale polynomsysteme mit einem besonderen gestalt der erzeugenden funktion, J. London Math. soc., 9, 6–13, 1934.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [PH]
    K.R. Parthasarathy and R.L. Hudson, Quantum Itô's formula, Comm. Math. Phys. 93(1984), 301–323.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [PS]
    K.R. Parthasarathy and K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lecture Notes-Mathematics, 272, Springer-Verlag, 1972.Google Scholar
  16. [Po]
    F. Pollaczek, Sur une famille de polynômes orthogonaux qui contient let polynômes d'Hermite et de Laguerre comme cas limites, Comptes Rend. Acad. Sci., Paris, 230(1950), 1563–1565.MathSciNetzbMATHGoogle Scholar
  17. [RKO]
    G.-C. Rota, Finite operator calculus, Academic Press, 1975.Google Scholar
  18. [St]
    R.F. Streater, Euclidean quantum mechanics and stochastic integrals, in London Math. Soc, 1980, Durham symposium, Stochastic Integrals. Lecture Notes in Math. 851, Springer-Verlag.Google Scholar
  19. [SW]
    R.F. Streater and A. Wulfsohn, Continuous tensor products of Hilbert spaces and generalized random fields, Nuovo Cimento, B 10, 57 (1968) 330–339.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [W]
    R.O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall, 1973.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Philip Feinsilver
    • 1
  1. 1.Department of MathematicsSouthern Illinois UniversityCarbondaleU.S.A.

Personalised recommendations