Advertisement

Temperature states of spin-boson models

  • M. Fannes
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1396)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Legett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, Anupam Garg, W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1–85 (1987)CrossRefGoogle Scholar
  2. 2.
    P. Pfeifer, Chiral Molecules. A superselection rule induced by the radiation field, Dissertation ETH no 6551, Zürich (1980)Google Scholar
  3. 3.
    E.B. Davies, Symmetry breaking for molecular open systems, Ann. Inst. H. Poincaré 35, 149–171 (1981)MathSciNetzbMATHGoogle Scholar
  4. 4.
    H. Spohn, R. Dümcke, Quantum tunneling with dissipation and the Ising model over ℝ, J. Stat. Phys. 41, 389–423 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Fannes, B. Nachtergaele, A. Verbeure, The equilibrium states of the spin-boson model, Commun. Math. Phys. 114, 537–548 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Nachtergaele, Exacte resultaten voor het spin-boson model, Dissertation K.U.Leuven, Leuven (1987)Google Scholar
  7. 7.
    K. Hepp, Rigorous results on the s — d model of the Kondo effect, Solid State Commun. 8, 2087–2090 (1970)CrossRefGoogle Scholar
  8. 8.
    K. Hepp, E.H. Lieb, Equilibrium statistical mechanics of matter interacting with the quantized radiation field, Phys. Rev. A 8, 2517–2525 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Cegla, J.T. Lewis, G.A. Raggio, Equilibrium thermodynamics of matter interacting with the quantized radiation field, Europhys. Lett. 4, 517 (1987)CrossRefGoogle Scholar
  10. 10.
    H. Araki, Relative hamiltonian for faithful normal states of a von Neumann algebra, Publ. of the RIMS, Kyoto University, 9, 165–209 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    O. Bratelli, D.W. Robinson, Operator algebras and quantum statistical mechanics 1 and 2, Springer-Verlag, Berlin-New-York-Heidelberg, (1987, 1981)CrossRefGoogle Scholar
  12. 12.
    J. Manuceau, M. Sirugue, D. Testard, A. Verbeure, The smallest C*-algebra for canonical commutation relations, Commun. Math. Phys. 32, 231–243 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F. Rocca, M. Sirugue, D. Testard, On a class of equilibrium states under the Kubo-Martin-Schwinger condition, II. Bosons, Commun. Math. Phys. 19, 119–141 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Manuceau, Etude de quelques automorphismes de la C*-algèbre du champ de bosons libres, Ann. Inst. H. Poincaré, 8, 117–138 (1968)MathSciNetzbMATHGoogle Scholar
  15. 15.
    H. Araki, E.J. Woods, Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas, J. Math. Phys. 4, 637–662 (1963)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Fannes
    • 1
  1. 1.Instituut voor Theoretische Fysica, K.U.LeuvenLeuvenBelgium

Personalised recommendations