Central limits of squeezing operators

  • L. Accardi
  • A. Bach
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1396)


Central Limit Central Limit Theorem Number Vector Weyl Operator Mathematical System Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Accardi L., Bach A. The harmonic oscillator as quantum central limit of Bernoulli processes. to appear in: Theory of Probability and relatid fieldsGoogle Scholar
  2. [2]
    Biedenharn L.C., Louck J.D. Angular Momentum in Quantum Physics, Addison-Wesley (1981).Google Scholar
  3. [3]
    Biedenharn L.C., Louck J.D. The Racah-Wigner algebra in Quantum theory, Addison-Wesley (1981).Google Scholar
  4. [4]
    Meyer P.A. Approximation de l'oscillateur harmonique, Seminaire de Probabilités, Strasbourg 1988/89.Google Scholar
  5. [5]
    Parthasarathy K.R. The passage from random walk to diffusion in quantum probability. in: Celebration Volume in Applied Probability (ed. J. Gani), Applied Probability Trust, Sheffield, U.K. 231–245, to appearGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • L. Accardi
    • 1
  • A. Bach
    • 2
  1. 1.Dipartimento di Matematica Centro Matematico V.VolterraUniversita' di Roma IIRomaItaly
  2. 2.Institut fur Theoretische Physik IUniversität MünsterMünsterFRG

Personalised recommendations