Ondelettes, filtres miroirs en quadrature et traitement numerique de l'image

  • Yves Meyer
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1438)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    E. H. Adelson & P. J. Burt The laplacian pyramid as a compact image code. IEEE Trans. Comm., COM-31 (1983), 532–540.Google Scholar
  2. [2]
    E. H. Adelson, R. Hingorani & E. Simoncelli Orthogonal pyramid transforms for image coding. SPIE 845, Visual communications and image processing II (1987), 50–58.Google Scholar
  3. [3]
    Th. P. Barnwell Subband coder design incorporating recursive quadrature filters and optimum ADPCM coders. IEEE Trans. Acoust., Speech, Signal processing, ASSP-30 (1982), 751–765.Google Scholar
  4. [4]
    G. Battle A block spin construction of ondelettes. Part I, Lemarié functions. Comm. Math. Phys. 110 (1987), 601–615.MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Battle A block spin construction of ondelettes. Part II, the QFT connection. Comm. Math. Phys. 114 (1988), 93–102.MathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature. Preprint du CEREMADE (1989).Google Scholar
  7. [7]
    I. Daubechies Orthogonal bases of compactly supported wavelets. Comm. in Pure and Applied Math. 41 (1988), 909–996.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    I. Daubechies, A. Grossmann & Y. Meyer Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. E. Elnakas, Kou-Hu Tzou, J. R. Cox, R. L. Hill & J. G. Jost Progressive coding and transmission of digital diagnostic pictures. IEEE Trans. on Medical Imaging, MI-5, no2 (1986).Google Scholar
  10. [10]
    D. Esteban & C. Galand Application of quadrature mirror filters to split band voice coding schemes. Proc. 1977 IEEE Int. Conf. Acoust., Speech, Signal processing, Hartford, CT (1977), 191–195.Google Scholar
  11. [11]
    P. Franklin A set of continuous orthogonal function. Math. Annalen 100 (1928), 522–529.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Garcia-Cuerva & J. L. Rubio de Francia Weighted norm inequalities and related topics. North-Holland Math. Studies 116.Google Scholar
  13. [13]
    M. Holschneider & P. Tchamitchian On the wavelet analysis of Riemann's function. Preprint (C.P.T., CNRS, Marseille-Luminy, case 907, 13288 Marseille Cedex 9).Google Scholar
  14. [14]
    S. G. Mallat Review of multifrequency channel decompositions of images and wavelet models. Invited paper for a special issue of IEEE on Acoustic, Speech and Signal processing, Multidimensional Signal Processing.Google Scholar
  15. [15]
    D. Marr Vision, a computational investigation into the human representation and processing of visual information. W. H. Freeman and Co. New York, 1982.Google Scholar
  16. [16]
    Y. Meyer Ondelettes, fonctions splines et analyses graduées. Rend. Sem. Mat. Univ. Politec. Torino 45 (1987).Google Scholar
  17. [17]
    Y. Meyer Ondelettes et applications. Cours d'automne, 1988, Institut de Physique Théorique, Université de Lausanne.Google Scholar
  18. [18]
    S. D. O'Neil & J. W. Woods Subband coding of images. IEEE Trans. on Acoust., Speech and Signal Proc., 34 (1986), 1278–1287.CrossRefGoogle Scholar
  19. [19]
    J. O. Strömberg A modified Haar system and higher order spline systems. Conference in harmonic analysis in honor of Antoni Zygmund, II, 475–493, edited by W. Beckner and al., Wadworth Math. Series.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Yves Meyer

There are no affiliations available

Personalised recommendations