Skip to main content

Introduction a la theorie des ondelettes

Part of the Lecture Notes in Mathematics book series (LNM,volume 1438)

Keywords

  • Franklin System
  • Nous Allons
  • Verifie Facilement
  • Convergent Vers
  • Produit Scalaire

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0083511
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-47179-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   46.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sc. Paris 292, série 2 (1981).

    Google Scholar 

  2. M. J. Bastiaans Gabor's signal expansion and degrees of freedom of a signal. Proc. IEEE 68 (1980), 538–539.

    CrossRef  Google Scholar 

  3. G. Battle A block spin construction of ondelettes. Part I: Lemarié functions. Comm. Math. Phys. (1987).

    Google Scholar 

  4. I. Daubechies Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 46 (1988), 909–996.

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. I. Daubechies The wavelet transform, time-frequency localization and signal analysis. AT & T Bell Laboratories, à paraître.

    Google Scholar 

  6. D. Gabor Theory of communication. J. Inst. Electr. Engin. (London) 93 (III) (1946), 429–457.

    Google Scholar 

  7. A. Grossmann & J. Morlet Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. (1984), 723–736.

    Google Scholar 

  8. S. Jaffard, Y. Meyer & O. Rioul L'analyse par ondelettes. Pour la Science, Sept. 1987, 28–37.

    Google Scholar 

  9. P. G. Lemarié Ondelettes à localisation exponentielle. J. Math. Pures Appl. 67 (1988), 227–236.

    MathSciNet  Google Scholar 

  10. P. G. Lemarié & Y. Meyer Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana vol. 2 (1986), 1–18.

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. S. Mallat A theory for multiresolution signal decomposition: the wavelet representation. A paraître aux IEEE Trans. on Pattern Anal. and Machine Intelligence. Tech. Rep. MS-CIS-87-22, Univ. Penn., 1987.

    Google Scholar 

  12. Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs. Sém. Bourbaki, février 1986.

    Google Scholar 

  13. J. O. Strömberg A modified Franklin system and higher-order systems of Rn as unconditional bases for Hardy spaces, in Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. 2, Waldsworth 1988, 475–494.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Lemarié, P.G. (1990). Introduction a la theorie des ondelettes. In: Lemarié, P.G. (eds) Les Ondelettes en 1989. Lecture Notes in Mathematics, vol 1438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0083511

Download citation

  • DOI: https://doi.org/10.1007/BFb0083511

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52932-3

  • Online ISBN: 978-3-540-47179-0

  • eBook Packages: Springer Book Archive