Advertisement

Introduction a la theorie des ondelettes

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1438)

Keywords

Franklin System Nous Allons Verifie Facilement Convergent Vers Produit Scalaire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [BAL 81]
    R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sc. Paris 292, série 2 (1981).Google Scholar
  2. [BAS 80]
    M. J. Bastiaans Gabor's signal expansion and degrees of freedom of a signal. Proc. IEEE 68 (1980), 538–539.CrossRefGoogle Scholar
  3. [BAT 87]
    G. Battle A block spin construction of ondelettes. Part I: Lemarié functions. Comm. Math. Phys. (1987).Google Scholar
  4. [DAU 88]
    I. Daubechies Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 46 (1988), 909–996.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [DAU]
    I. Daubechies The wavelet transform, time-frequency localization and signal analysis. AT & T Bell Laboratories, à paraître.Google Scholar
  6. [GAB 46]
    D. Gabor Theory of communication. J. Inst. Electr. Engin. (London) 93 (III) (1946), 429–457.Google Scholar
  7. [GRO-MOR 84]
    A. Grossmann & J. Morlet Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. (1984), 723–736.Google Scholar
  8. [JAF-MEY-RIO 87]
    S. Jaffard, Y. Meyer & O. Rioul L'analyse par ondelettes. Pour la Science, Sept. 1987, 28–37.Google Scholar
  9. [LEM 88]
    P. G. Lemarié Ondelettes à localisation exponentielle. J. Math. Pures Appl. 67 (1988), 227–236.MathSciNetGoogle Scholar
  10. [LEM-MEY 86]
    P. G. Lemarié & Y. Meyer Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana vol. 2 (1986), 1–18.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [MAL 87]
    S. Mallat A theory for multiresolution signal decomposition: the wavelet representation. A paraître aux IEEE Trans. on Pattern Anal. and Machine Intelligence. Tech. Rep. MS-CIS-87-22, Univ. Penn., 1987.Google Scholar
  12. [MEY 86]
    Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs. Sém. Bourbaki, février 1986.Google Scholar
  13. [STR 82]
    J. O. Strömberg A modified Franklin system and higher-order systems of Rn as unconditional bases for Hardy spaces, in Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. 2, Waldsworth 1988, 475–494.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

There are no affiliations available

Personalised recommendations