Derived categories

  • Jan-Erik Björk
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1478)


Exact Sequence Spectral Sequence Noetherian Ring Abelian Category Mapping Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BO: 1]
    A.BOREL. Sheaf theoretic Intersection cohomology. Progress in Mathematics. Birkhäuser, 1984.Google Scholar
  2. [BO: 2]
    A.BOREL et al. Algebraic D-modules. Perspectives in Mathematics, vol. 2, Academic Press, 1987.Google Scholar
  3. [BR]
    G.BREDON. Sheaf Theory.Google Scholar
  4. [B-B-D]
    A.A.BEILINSON, J.BERNSTEIN, P.DELIGNE. Faisceaux Pervers. Astérisque, vol. 100, 1982.Google Scholar
  5. [GO]
    R.GODEMENT. Theorie des faisceaux. Hermann, 1958.Google Scholar
  6. [KA]
    M. KASHIWARA. The Riemann-Hilbert correspondence for holonomic systems. Publ. RIMS, Kyoto, 20, 319–365, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [K-K]
    M. KASHIWARA, T. KAWAI. On the holonomic systems of micro-differential operators III. Publ.RIMS, 17, 813–979, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [K-S]
    M. KASHIWARA, P. SCHAPIRA. Sheaves on manifolds. Springer Verlag, Grundlehren, 292 (1990).CrossRefzbMATHGoogle Scholar
  9. [ME]
    Z. MEBKHOUT. Systemes différentiels. Travaux en cours. Vol. 35, Hermann, Paris, 1989.zbMATHGoogle Scholar
  10. [DE]
    P.DELIGNE. Théorème de Lefschetz et critères de dégénérescence de suites spectrales. I.H.E.S., no 35, 1968.Google Scholar
  11. [GM]
    S.GELFAND, Yu MANIN. Methods in homological algebra. To appear in Springer Verlag, Grundlehren series (1991).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jan-Erik Björk

There are no affiliations available

Personalised recommendations