Advertisement

Le calcul des formes lineaires et les polynômes orthogonaux semi-classioues

  • Pascal Maroni
Contributors
Part of the Lecture Notes in Mathematics book series (LNM, volume 1329)

Keywords

Umbral Calculus Distributional Weight Function Proposition Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.D. MORTON, A.M. KRALL, Distributional weight functions for orthogonal polynomials. SIAM, J. Math. Anal. 9 (1978), p. 604–626.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S.M. ROMAN, G.C. ROTA. The Umbral calculus. Adv. in Math. 27 (1978), p. 95–188.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. MARONI. Une caractérisation des polynômes orthogonaux semi-classiques C.R. Acad. Sc. Paris, 301 série I, no6 (1985), p 269–272.MathSciNetzbMATHGoogle Scholar
  4. 4.
    P. MARONI. Prolégomènes a l'étude des polynômes orthogonaus semi-classiques. Publ. Labo. Anal. Num. Univ. P. et M. Curie, C.N.R.S. no 85013 (1985) Paris.Google Scholar
  5. 5.
    W. HAHN. Uber Differentialgleichungen für Orthogonalpolynome. Monat. Math. 95, (1983), p. 269–274.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. MARONI. Introduction à l'étude des δ-polynômes orthogonaux semi-classiques. Actas III Simposium Poli. Orto. y Apli. Segovia, Juin 1985. Edit. F. Marcellán, Dep. Mat., José Gutiérrez Abascal, 2, 28006 Madrid.Google Scholar
  7. 7.
    F. TREVES, Topological vector spaces, distributions and Kernels. Acad. Press (1967).Google Scholar
  8. 8.
    P. MARONI. Sur quelques espaces de distributions qui sont des formes linéaires sur l'espace vectoriel des polynômes. Symposium Laguerre, Bar-le-Duc (1984). Lecture Notes 1171 (1985).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Pascal Maroni
    • 1
  1. 1.Laboratoire d'Analyse NumériqueUniversité P. et M. CurieParis Cedex 05

Personalised recommendations