Advertisement

Gauss quadrature for analytic functions

  • T. J. Rivlin
Invited Speakers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1329)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AND]
    Andersson, J-E., Optimal quadrature of H p functions, Math. Z.172, 1980, pp. 55–62.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BAK]
    Bakhvalov, N.S., On the optimal speed of integrating analytic functions, (English translation), U.S.S.R. Comput. Math. Math. Phys.7, 1967, pp. 63–75.CrossRefzbMATHGoogle Scholar
  3. [DYN-MIC-RIV]
    Dyn, N., C.A. Micchelli and T.J. Rivlin, Blaschke products and optimal recovery in H , to appear in CALCOLO.Google Scholar
  4. [GAU]
    Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, “E.B. Christoffel” (Eds. P.L. Butzer and F. Feher), Birkhauser Verlag, Basel, 1981, pp. 72–147.CrossRefGoogle Scholar
  5. [GAU-VAR]
    Gautschi, W., and R.S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal.20, 1983, pp. 1170–1186.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [KOW-WER-WOZ]
    Kowalski, M.A., A.G. Werschulz and H. Woźniakowski, Is Gauss quadrature optimal for analytic functions?, Numer. Math.47, 1985, pp. 89–98.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [MIC-RIV]
    Micchelli, C.A., and T.J. Rivlin, A survey of optimal recovery, Optimal Estimation in Approximation Theory, (Eds. C.A. Micchelli and T.J. Rivlin), Plenum Press, N.Y., 1977, pp. 1–54.CrossRefGoogle Scholar
  8. [NEW]
    Newman, D.J., Quadrature in H p, Lectures III, IV, “Approximation with Rational Functions”, CBMS Regional Conference Series in Math., No. 41, American Mathematical Society, Providence, R.I., 1979.CrossRefGoogle Scholar
  9. [RIV]
    Rivlin, T.J., “The Chebyshev Polynomials”, Wiley, N.Y., 1974.zbMATHGoogle Scholar
  10. [SEI-SZA]
    Seidel, W., and O. Szász, On positive harmonic functions and ultraspherical polynomials, J. London Math. Soc.26, 1951, pp. 36–41.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [SZE]
    Szegö, G., “Orthogonal Polynomials”, American Math. Soc., Providence, R.I., 1975.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • T. J. Rivlin
    • 1
  1. 1.Mathematical Sciences DepartmentIBM Thomas J. Watson Research CenterYorktown HeightsU.S.A.

Personalised recommendations