Gauss quadrature for analytic functions

  • T. J. Rivlin
Invited Speakers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1329)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AND]
    Andersson, J-E., Optimal quadrature of H p functions, Math. Z.172, 1980, pp. 55–62.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BAK]
    Bakhvalov, N.S., On the optimal speed of integrating analytic functions, (English translation), U.S.S.R. Comput. Math. Math. Phys.7, 1967, pp. 63–75.CrossRefzbMATHGoogle Scholar
  3. [DYN-MIC-RIV]
    Dyn, N., C.A. Micchelli and T.J. Rivlin, Blaschke products and optimal recovery in H , to appear in CALCOLO.Google Scholar
  4. [GAU]
    Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, “E.B. Christoffel” (Eds. P.L. Butzer and F. Feher), Birkhauser Verlag, Basel, 1981, pp. 72–147.CrossRefGoogle Scholar
  5. [GAU-VAR]
    Gautschi, W., and R.S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal.20, 1983, pp. 1170–1186.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [KOW-WER-WOZ]
    Kowalski, M.A., A.G. Werschulz and H. Woźniakowski, Is Gauss quadrature optimal for analytic functions?, Numer. Math.47, 1985, pp. 89–98.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [MIC-RIV]
    Micchelli, C.A., and T.J. Rivlin, A survey of optimal recovery, Optimal Estimation in Approximation Theory, (Eds. C.A. Micchelli and T.J. Rivlin), Plenum Press, N.Y., 1977, pp. 1–54.CrossRefGoogle Scholar
  8. [NEW]
    Newman, D.J., Quadrature in H p, Lectures III, IV, “Approximation with Rational Functions”, CBMS Regional Conference Series in Math., No. 41, American Mathematical Society, Providence, R.I., 1979.CrossRefGoogle Scholar
  9. [RIV]
    Rivlin, T.J., “The Chebyshev Polynomials”, Wiley, N.Y., 1974.zbMATHGoogle Scholar
  10. [SEI-SZA]
    Seidel, W., and O. Szász, On positive harmonic functions and ultraspherical polynomials, J. London Math. Soc.26, 1951, pp. 36–41.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [SZE]
    Szegö, G., “Orthogonal Polynomials”, American Math. Soc., Providence, R.I., 1975.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • T. J. Rivlin
    • 1
  1. 1.Mathematical Sciences DepartmentIBM Thomas J. Watson Research CenterYorktown HeightsU.S.A.

Personalised recommendations