Advertisement

Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials

  • Tom H. Koornwinder
Invited Speakers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1329)

Keywords

Orthogonal Polynomial Spherical Function Jacobi Polynomial Orthogonal System Limit Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.E. Andrews and R. Askey, “Classical orthogonal polynomials,” pp. 36–62 in Polynômes Orthogonaux et Applications, ed. C. Brezinski, A. Draux, A.P. Magnus, P. Maroni, A. Ronveaux, Lecture Notes in Math. 1171, Springer (1985).Google Scholar
  2. 2.
    R. Askey, “Continuous Hahn polynomials,” J. Phys. A: Math. Gen. 18, pp. L1017–L1019 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. Askey and J. Wilson, “A set of hypergeometric orthogonal polynomials,” SIAM J. Math. Anal. 13, pp. 651–655 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs Amer. Math. Soc. 319 (1985).Google Scholar
  5. 5.
    N.M. Atakishiyev and S.K. Suslov, “The Hahn and Meixner polynomials of an imaginary argument and some of their applications,” J.Phys. A: Math. Gen. 18, pp. 1583–1596 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6,7,8.
    E. Badertscher and T.H. Koornwinder, “Continuous Hahn polynomials of argument i d/dt and analysis on Riemannian symmetric spaces of constant curvature,” CWI preprint, to appear.Google Scholar
  7. 9.
    D. Basu and K.B. Wolf, “The unitary irreducible representations of SL(2,R) in all subgroup reductions,” J. Math. Phys. 23, pp. 189–205 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 10.
    L.C. Biedenharn and J.D. Louck, Angular momentum in quantum physics, Encyclopedia of Math., Vol. 8, Addison-Wesley (1981).Google Scholar
  9. 11.
    C.P. Boyer and F. Ardalan, “On the decomposition SO(p1)⊃SO(p−1,1) for most degenerate representations,” J. Math. Phys. 12, pp. 2070–2075 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 12.
    C.F. Dunkl, “A difference equation and Hahn polynomials in two variables,” Pac. J. Math. 92, pp. 57–71 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 13.
    C.F. Dunkl, “Orthogonal polynomials with symmetry of order three,” Can. J. Math. 36, pp. 685–717 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 14.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher transcendental functions, Vols. I,II,III, McGraw-Hill (1953,1953,1955).Google Scholar
  13. 15,16.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Tables of integral transforms, Vols. I,II, McGraw-Hill (1954).Google Scholar
  14. 17.
    J. Faraut, “Distributions sphériques sur les espaces hyperboliques,” J. Math. Pures Appl. 58, pp. 369–444 (1979).MathSciNetzbMATHGoogle Scholar
  15. 18.
    J. Faraut, “Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques,” pp. 315–446 in Analyse harmonique, CIMPA, Nice (1982).Google Scholar
  16. 19.
    M. Flensted-Jensen, “Spherical functions on a simply connected semisimple Lie group. II. The Paley-Wiener theorem for the rank one case,” Math. Ann. 228, pp. 65–92 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 20.
    S. Helgason, “A duality for symmetric spaces with applications to group representations, II. Differential equations and eigenspace representations,” Advances in Math. 22, pp. 187–219 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 21.
    S. Helgason, Groups and geometric analysis, Academic Press (1984).Google Scholar
  19. 22.
    S. Karlin and J.L. McGregor, “The Hahn polynomials, formulas and an application,” Scripta Math. 26, pp. 33–46 (1963).MathSciNetzbMATHGoogle Scholar
  20. 23.
    T.H. Koornwinder, “The addition formula for Jacobi polynomials and spherical harmonics,” SIAM J. Appl. Math. 25, pp. 236–246 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 24.
    T.H. Koornwinder, “A new proof of a Paley-Wiener type theorem for the Jacobi transform,” Ark. Mat. 13, pp. 145–159 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 25.
    T.H. Koornwinder, “Clebsch-Gordan coefficients for SU(2) and Hahn polynomials,” Nieuw Airchief voor Wiskunde (3) 29, pp. 140–155 (1981).MathSciNetzbMATHGoogle Scholar
  23. 26.
    T.H. Koornwinder, “Krawtchouk polynomials, a unification of two different group theoretic interpretations,” SIAM J. Math. Anal. 13, pp. 1011–1023 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 27.
    T.H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups,” pp. 1–85 in Special functions: Group theoretical aspects and applications, (R.A. Askey, T.H. Koornwinder, W. Schempp, eds.), Reidel (1984).Google Scholar
  25. 28.
    T.H. Koornwinder, “A group theoretic interpretation of Wilson polynomials,” Report PM-R8504, Centre for Math. and Computer Science, Amsterdam (1985).zbMATHGoogle Scholar
  26. 29.
    T.H. Koornwinder, “Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform,” pp. 174–183 in Polynômes Orthogonaux et Applications, (C. Brezinski, A. Draux, A.P. Magnus, P. Maroni, A. Ronveaux, eds.), Lecture Notes in Math. 1171, Springer (1985).Google Scholar
  27. 30.
    J. Labelle, “Tableau d'Askey,” pp. xxxvi–xxxvii in Polynômes Orthogonaux et Applications, ed. C. Brezinski, A. Draux, A.P. Magnus, P. Maroni, A. Ronveaux, Lecture Notes in Math. 1171, Springer (1985).Google Scholar
  28. 31.
    A.F. Nikiforov, S.K. Suslov, and V.B. Uvarov, Classical orthogonal poynomials of a discrete variable (Russian), Nauka, Moscow (1985).zbMATHGoogle Scholar
  29. 32.
    S.N.M. Ruijsenaars, “Complete integrability of relativistic Calogero-Moser systems and elliptic function identities,” preprint (1986).Google Scholar
  30. 33.
    S.K. Suslov, “The Hahn polynomials in the Coulomb problem (Russian),” Yadernaya Fiz. 40, no.1, pp. 126–132 (1984).MathSciNetGoogle Scholar
  31. 34.
    G. Szegö, Orthogonal polynomials, American Math. Society Colloquium Publications, Vol. 23, Fourth ed. (1975).Google Scholar
  32. 35.
    K. Trimèche, “Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,∞),” J. Math. Pures Appl. (9) 60, pp. 51–98 (1981).MathSciNetzbMATHGoogle Scholar
  33. 36.
    N.Ja. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc. Transl. of Math. Monographs, Vol. 22 (1968).Google Scholar
  34. 37.
    J.A. Wilson, “Some hypergeometric orthogonal polynomials,” SIAM J. Math. Anal. 11, pp. 690–701 (1980).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Tom H. Koornwinder
    • 1
  1. 1.Centre for Math. and Computer Science, Amsterdam and Math. InstituteUniversity of LeidenThe Netherlands

Personalised recommendations