Advertisement

Splitting Σ(CP ×…× CP) and the action of steenrod squares Sqi on the polynomial ring F2 [x1,…,xn]

  • R. M. W. Wood
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1298)

Keywords

Homogeneous Polynomial Group Ring Composition Factor Weight Class Trivial Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.F. Adams, J. Gunawardena, H. Miller: "The Segal conjecture for elementary abelian p-groups". Topology vol.24, No.4, 435–460 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.F. Adams, C. Wilkerson: "Finite H-spaces and algebras over the Steenrod algebra". Ann. of Math. 111, 95–143 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Carlisle: "The modular representation theory of GL(n,p) and applications to topology". Thesis, Manchester (1985).Google Scholar
  4. [4]
    D. Carlisle et al.: "Modular representations of GL(n,p), splitting Σ(CP ×…× CP) and the β-family as framed hypersurfaces" Math. Z. 189, 239–261 (1985).MathSciNetCrossRefGoogle Scholar
  5. [5]
    J.C. Harris, N.J. Kuhn: "Stable decomposition of classifying spaces of finite abelian p groups". Preprint.Google Scholar
  6. [6]
    K. Knapp: "Some applications of K-theory to framed bordism, e-invariant and transfer". Habilitationsschrift, Bonn (1979).zbMATHGoogle Scholar
  7. [7]
    S.A. Mitchell: "Splitting B(ℤ/p)n and BTn via modular representation theory". Math. Z. 189, 1–9 (1985).MathSciNetCrossRefGoogle Scholar
  8. [8]
    S.A. Mitchell, S. Priddy: "Stable splittings derived from the Steinberg module". Topology 22, 285–298 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Zarati: "Quelques propriétés du foncteur HomU p (, H*V)". Proceedings, Algebraic Topology, Gőttingen, Springer Lecture Notes (1984).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. M. W. Wood
    • 1
  1. 1.Department of MathematicsUniversity of ManchesterManchesterEngland

Personalised recommendations