Squaring operations in mod 2 cohomology of quotients of compact lie groups by maximal tori

  • Akira Kono
  • Kiminao Ishitoya
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1298)


Weyl Group Chern Class Maximal Torus Dynkin Diagram Cohomology Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Borel and J. de Siebenthal: Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), 200–221.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Bott and H. Samelson: Applications of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964–1029.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Bourbaki: Groupes et algèbres de Lie IV-VI, Hermann, 1968.Google Scholar
  4. [4]
    A. Kono and K. Ishitoya: Squaring operations in the 4-connective fibre spaces over the classifying spaces of the exceptional Lie groups, Publ. RIMS Kyoto Univ., 21 (1985),1299–1310.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. de Siebenthal: Sur les sous-groupes fermés connexes d'un groupe de Lie clos, Comment. Math. Helv., 25 (1951), 210–256.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Toda: On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ., 15 (1975), 185–199.MathSciNetzbMATHGoogle Scholar
  7. [7]
    H. Toda and M. Mimura: Topology of Lie groups, Kinokuniya, 1978 (in Japanese).Google Scholar
  8. [8]
    H. Toda and T. Watanabe: The integral cohomology ring of F4/T and E6/T, J. Math. Kyoto Univ., 14 (1974), 257–286.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Akira Kono
  • Kiminao Ishitoya

There are no affiliations available

Personalised recommendations