Advertisement

Sur les A-algebres instables

  • P. Goerss
  • L. Smith
  • S. Zarati
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1298)

Keywords

Note Encore Nous Donnons Simplement Connexe Degre Pair Suite Spectrale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. F. Adams, J. Gunawardena and H. Miller: The Segal conjecture for elementary abelian p-groups. Topology Vol. 24, No. 4, pp. 435–460 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. F. Adams and C. Wilkerson: Finite H-spaces and algebras over the Steenrod algebra. Ann. of Math. III (1980), pp. 95–143.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Duflot, P. S. Landweber and R. E. Stong: A problem of Adams on H* (BG;Z/p). Algebraic Topology (Göttingen 1984) L.N.M. 1172, pp. 73–79.Google Scholar
  4. [4]
    J. Lannes: Sur la cohomologie modulo p des p-groupes abéliens élémentaires, preprint 1986.Google Scholar
  5. [5]
    J. Lannes et S. Zarati: Foncteurs dérivés de la déstabilisation. Math. Z. 194, 25–59 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Lannes et S. Zarati: Sur les-injectifs. Ann. Scient. Ec. Norm. Sup. 19 (1986), pp. 303–333.MathSciNetzbMATHGoogle Scholar
  7. [7]
    J. Lannes et S. Zarati: Invariant de Hopf d'ordre supérieur et suite spectrale d'Adams; à paraitre.Google Scholar
  8. [8]
    W. H. Li: Iterated loop functions and the homology of the Steenrod algebra A(p). Thesis. Fordham University, New-York 1980.Google Scholar
  9. [9]
    H. R. Miller: The Sullivan conjecture on maps from classifying spaces. Ann. of Math. 120 (1984), pp. 39–97.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Steenrod and D. B. A. Epstein: Cohomology operations, Princeton University Press, 1962.Google Scholar
  11. [11]
    S. Zarati: Dérivés de la déstabilisation en caractéristique impaire et applications. Thèse, Orsay 1984.Google Scholar
  12. [12]
    S. Zarati: Quelques propriétés du foncteur Hom (, H*(V)) Algebraic Topology (Göttingen 1984) L.N.M. 1172 p (1985), pp. 204–209.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. Goerss
    • 1
  • L. Smith
    • 2
  • S. Zarati
    • 3
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.Mathematisches InstitutGöttingenWest Germany
  3. 3.Université de Tunis Campus UniversitaireTunisTunisia

Personalised recommendations