Advertisement

Minimal surfaces of finite index in manifolds of positive scalar curvature

  • Robert Gulliver
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1340)

Keywords

Minimal Surface Scalar Curvature Finite Index Compact Riemann Surface Jacobi Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C-V]
    S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math. 2 (1935), 69–133.MathSciNetzbMATHGoogle Scholar
  2. [D]
    A. Duschek, Zur geometrischen Variationsrechnung, Math. Z. 40 (1936), 279–291.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [F-C]
    D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index, Inventiones Math. 82 (1985), 121–132.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [G]
    G. Gulliver, Index and total curvature of complete minimal surfaces, Proc. Symp. Pure Math. 44 (1986), 207–212.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [GL]
    R. Gulliver and H.B. Lawson, The structure of stable minimal hypersurfaces near a singularity, Proc. Symp. Pure Math. 44 (1986), 213–237.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [H]
    H. Hardt, Topological properties of subanalytic sets, Trans. Amer. Math. Soc. 211 (1975), 57–70.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [L]
    H. Lewy, Aspects of the Calculus of Variations, University of California Press, Berkeley 1939.Google Scholar
  8. [O]
    R. Osserman, A survey of minimal surfaces, Van Nostrand-Reinhold, New York 1969.zbMATHGoogle Scholar
  9. [S]
    R. Schoen, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791–809.MathSciNetzbMATHGoogle Scholar
  10. [SY]
    R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with non-negative scalar curvature, Annals of Math. 110 (1979), 127–142.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Robert Gulliver
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations