The eigenvalues of hypoelliptic operators

  • A. Menikoff
  • J. Sjöstrand
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 660)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. AGMON and Y. KANNAI. On the asymptotic behavior of the spectral functions and resolvent kernels of elliptic operators. Israel J. Math. 5 (1967) 1–30.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. BOLLEY, J. CAMUS and T. PHAM. In this volume.Google Scholar
  3. [3]
    L. BOUTET de MONVEL and F. TREVES. On a classe of pseudo-differential operators with double characteristics. Invent. Math. 24 (1974) 1–34.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. HÖRMANDER. The spectral function of an elliptic operator. Acta Math. 121 (1968) 193–218.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. MELIN. Lower bounds for pseudo-differential operators. Ark. Mat. 9 (1971) 117–140.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. MELIN and J. SJÖSTRAND. Fourier integral operators with complex-valued phase functions. Springer L.N. 459, 255–282.Google Scholar
  7. [7]
    G. METIVIER. Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques. Comm. PDE 1 (1976) 467–519.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. SEELEY. Complex powers of an elliptic operator. AMS Proc. Symp. in Pure Math. 10 (1967) 288–307.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. SJÖSTRAND. Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12 (1974) 85–130.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Menikoff
    • 1
  • J. Sjöstrand
    • 1
  1. 1.Université de Paris XI U.E.R. MathématiqueOrsay

Personalised recommendations