Advertisement

The eigenvalues of hypoelliptic operators

  • A. Menikoff
  • J. Sjöstrand
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 660)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. AGMON and Y. KANNAI. On the asymptotic behavior of the spectral functions and resolvent kernels of elliptic operators. Israel J. Math. 5 (1967) 1–30.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. BOLLEY, J. CAMUS and T. PHAM. In this volume.Google Scholar
  3. [3]
    L. BOUTET de MONVEL and F. TREVES. On a classe of pseudo-differential operators with double characteristics. Invent. Math. 24 (1974) 1–34.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. HÖRMANDER. The spectral function of an elliptic operator. Acta Math. 121 (1968) 193–218.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. MELIN. Lower bounds for pseudo-differential operators. Ark. Mat. 9 (1971) 117–140.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. MELIN and J. SJÖSTRAND. Fourier integral operators with complex-valued phase functions. Springer L.N. 459, 255–282.Google Scholar
  7. [7]
    G. METIVIER. Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques. Comm. PDE 1 (1976) 467–519.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. SEELEY. Complex powers of an elliptic operator. AMS Proc. Symp. in Pure Math. 10 (1967) 288–307.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. SJÖSTRAND. Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12 (1974) 85–130.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Menikoff
    • 1
  • J. Sjöstrand
    • 1
  1. 1.Université de Paris XI U.E.R. MathématiqueOrsay

Personalised recommendations