Advertisement

Characters of special groups

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 131)

Keywords

Conjugacy Class Algebraic Group Weyl Group Parabolic Subgroup Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki, Eléments de Mathématique, Algèbre commutative, Chap. 3.Google Scholar
  2. 2.
    P. Cartier—D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture notes in mathematics no. 85, Springer Verlag 1969.Google Scholar
  3. 3.
    F. G. Frobenius, Gesammelte Abhandlungen, Bd. III, Springer Verlag 1969.Google Scholar
  4. 4.
    J. A. Green, The characters of the finite general linear groups, Trans. A.M.S. 80 (1955), 402–447.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    B. Huppert, Endliche Gruppen I, Die Grundl. der math. Wiss., Bd. 134, Springer Verlag 1967.Google Scholar
  6. 6.
    I. G. Macdonald, The Hall algebra, to appear in Jahresber. D.M.V.Google Scholar
  7. 7.
    A. O. Morris, The characters of the group GL(n, q), Math. Zs. 81 (1963), 112–123.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    G.-C. Rota, On the Foundations of Combinatorial Theory I, Theory of Möbius Functions, Zeit. für Wahrscheinlichkeitsrechnung 2 (1964), 340–368.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. reine u. angew. Math. 132 (1907), 85–137.MathSciNetzbMATHGoogle Scholar
  10. 10.
    B. Srinivasan, The characters of the finite symplectic group Sp(4, q), Trans. A.M.S. 131 (1968), 488–525.MathSciNetzbMATHGoogle Scholar
  11. 11.
    R. Steinberg, Endomorphisms of linear algebraic groups, Mem. A. M. S. no. 80, 1968.Google Scholar
  12. 12.
    R. Steinberg, Lectures on Chevalley groups, Notes by J. Faulkner and R. Wilson, Yale University (1967).Google Scholar
  13. 13.
    S. Tanaka, Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka Jour. Math. 4 (1967), 65–84.MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Weil, Adeles and algebraic groups, Princeton (1961).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

There are no affiliations available

Personalised recommendations