Advertisement

On the K-theory of the classifying spaces of the general linear groups over finite fields

  • Friedrich Hegenbarth
Manifolds And Algebraic Topology
Part of the Lecture Notes in Mathematics book series (LNM, volume 1350)

Keywords

Symmetric Group Finite Field Primitive Element General Linear Group Elementary Symmetric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Abe, Hopf algebras, Cambridge University Press, Cambridge 1977.zbMATHGoogle Scholar
  2. [2]
    M. F. Atiyah, Characters and cohomology of finite groups, Publ. Math. IHES 9 (1961), 23–64.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Hegenbarth, On the K-theory of the classifying space of the infinite symmetric group, Amer. J. of Math., to appear.Google Scholar
  4. [4]
    D. Knutson, λ-rings and the representation theory of the symmetric group, Lect. Notes in Math. 308, Springer Verlag, Berlin (1973).zbMATHGoogle Scholar
  5. [5]
    A. Liulevicius, Representation rings of the symmetric groups, A Hopf algebra approach, Preprint Series No. 29, Aarhus (1975/76).Google Scholar
  6. [6]
    I. Madsen, V. P. Snaith and J. Tornehave, Infinite loop maps in geometric topology, Math. Proc. Camb. Phil. Soc. 81 (1977), 399–430.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. G. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 2 (1972), 552–586.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Sullivan, Geometric Topology, part I, M. I. T. Notes, Cambridge (1971).Google Scholar
  9. [9]
    A. V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Math. 869, Springer Verlag, Berlin (1981).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Friedrich Hegenbarth
    • 1
  1. 1.Istituto di Matematica Facoltà di ScienzeUniversità degli Studi della BasilicataPotenza

Personalised recommendations