Advertisement

Multiple point invariants of link maps

  • Ulrich Koschorke
Linking Phenomena And 3-Dimensional Topology
Part of the Lecture Notes in Mathematics book series (LNM, volume 1350)

Keywords

Exact Sequence Double Point Loop Space Bordism Group Bordism Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Da]
    J. P. DAX, Etude homotopique des espaces de plongements, Ann. Sc. ENS, 4o série, t. 5 (1972), 303–377.MathSciNetzbMATHGoogle Scholar
  2. [FR]
    R. FENN and D. ROLFSEN, Spheres may link homotopically in 4-space, J. London Math. Soc. (2) 34 (1986), 177–184.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Ha]
    N. HABEGGER, On linking coefficients, Proc. AMS 92, 2 (1986), 353–359.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Hi]
    M. HIRSCH, Immersions of manifolds, Trans. AMS 93 (1959), 242–276.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [HS]
    F. HOSOKAWA and S. SUZUKI, Linking 2-spheres in the 4-sphere, Kobe J. Math., 4 (1987), 193–208.MathSciNetzbMATHGoogle Scholar
  6. [Ja]
    I. JAMES, On the iterated suspension, Quart. J. Math. Oxford (2), 5 (1954), 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Ka]
    U. KAISER, Link maps in Euclidean space, Doctoral thesis, Siegen University, 1988.Google Scholar
  8. [Ki 1]
    P. KIRK, A link homotopy invariant for Sk U S2k-2 → S2k, Brandeis University preprint, 1986.Google Scholar
  9. [Ki 2]
    P. KIRK, Link homotopy with one codimension two component, Brandeis University preprint, 1987.Google Scholar
  10. [Ki 3]
    P. KIRK, New link homotopy invariants, Lecture at the Second Siegen Topology Symposium 1987 (see also Brandeis University Thesis 1988).Google Scholar
  11. [Ki 4]
    P. KIRK, Link maps in the 4-sphere, these Proceedings volume, LNiM, Springer-Verlag, (1988).Google Scholar
  12. [Ko 1]
    U. KOSCHORKE, Vector fields and other vector bundle morphisms-a singularity approach, Lecture Notes in Math. 847, Springer Verlag, Berlin-Heidelberg-New York, (1981).CrossRefzbMATHGoogle Scholar
  13. [Ko 2]
    U. KOSCHORKE, Higher order homotopy invariants for higher dimensional link maps, Lecture Notes in Math. 1172, Springer Verlag, Berlin-Heidelberg-New York, (1985), 116–129.zbMATHGoogle Scholar
  14. [Ko 3]
    U. KOSCHORKE, Link maps and the geometry of their invariants, manuscr. math. (1988)Google Scholar
  15. [Ko 4]
    U. KOSCHORKE, Desuspending the α-invariant of link maps, Proceedings of the Baku Topology conference 1987, LNiM, Springer-Verlag.Google Scholar
  16. [Ko 5]
    U. KOSCHORKE, On the classification of link maps, Siegen University preprint (1988).Google Scholar
  17. [Ko 6]
    U. KOSCHORKE, Link homotopy and link concordance, in preparation.Google Scholar
  18. [KS 1]
    U. KOSCHORKE and B. SANDERSON, Geometric interpretations of the generalized Hopf invariant, Math. Scand. 41 (1977), 199–217.MathSciNetzbMATHGoogle Scholar
  19. [KS 2]
    U. KOSCHORKE and B. SANDERSON, Selfintersections and higher Hopf invariants, Topology 17 (1978), 283–290.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Ma]
    B. MAZUR, On embedding of spheres, Bull. AMS 65 (1959), 59–65.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [MR]
    W. MASSEY and D. ROLFSEN, Homotopy classification of higher dimensional links, Indiana Univ. Math. J. 34 (1986), 375–391.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Mi]
    J. MILNOR, Link groups, Ann. of Math. 59 (1954), 177–195.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Sal]
    M. A. SALOMONSEN, Bordism and geometric dimension, Math. Scand. 32 (1973), 87–111.MathSciNetzbMATHGoogle Scholar
  24. [San1]
    B. SANDERSON, Bordism of links in codimension 2, J. London Math. Soc. (2) 35 (1987), 367–376.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [San2]
    B. SANDERSON, Bordism of immersed links in codimension 2, Warwick University preprint, 1986.Google Scholar
  26. [Sat]
    N. SATO, Cobordism of semi-boundary links, Topology and its Applications 18 (1984), 225–234.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Sc 1]
    P. SCHWEITZER, Joint cobordism of immersions, LNiM 168, Springer-Verlag (1970), 267–282.Google Scholar
  28. [Sc 2]
    P. SCHWEITZER, Private communication (1978) concerning a research summary of 1971.Google Scholar
  29. [Sco]
    P. SCOTT, Homotopy links, Abh. Math. Sem. Hamburg 32 (1968), 186–190.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Sn]
    V. SNAITH, A stable decomposition of ΩnSnX, J. London Math. Soc. (2), 7 (1974), 577–583.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [To]
    H. TODA, Composition methods in homotopy groups of spheres, Annals of Math. Studies, No. 49 (1962), Princeton Univ. Press.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Ulrich Koschorke
    • 1
  1. 1.Mathematik V, Universität-GH SiegenSiegen

Personalised recommendations