Advertisement

Cohomologie cristalline

d’après P. Berthelot
  • Luc Illusie
16, 17, 18 Novembre 1974
Part of the Lecture Notes in Mathematics book series (LNM, volume 514)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    M. ARTIN—Supersingular K3 surfaces, Ann. Sc. ENS, t. 8, 1975, à paraîtreGoogle Scholar
  2. [2]
    P. BERTHELOT—Cohomologie cristalline, Lecture Notes in Math. 407, Springer Verlag, Berlin, 1974.zbMATHGoogle Scholar
  3. [3]
    P. BERTHELOT—The slope filtration on crystalline cohomology, Proc. of the AMS Summer Institute 1974, à paraître.Google Scholar
  4. [4]
    S. BLOCH—Article en préparation.Google Scholar
  5. [5]
    P. CARTIER—Groupes formels associés aux anneaux de Witt généralisés, C.R. Acad. Sci. Paris, t. 265 (1967), 50–52, et Modules associés à un groupe formel commutatif, courbes typiques, C.R. Acad. Sci. Paris, t. 265 (1967) 129–132.Google Scholar
  6. [6]
    P. DELIGNE—La conjecture de Weil I, Pub. Math. de l’I.H.E.S.no 43, 1974.Google Scholar
  7. [7]
    A. GROTHENDIECK—Lettre à J. Tate, mai 1966.Google Scholar
  8. [8]
    A. GROTHENDIECK—Crystals and the De Rham cohomology of schemes, Notes by I. Coates and O. Jussila, in Dix exposés, Advanced Studies in pure Math., North Holland, 1968.Google Scholar
  9. [9]
    A. GROTHENDIECK—Groupes de Barsotti-Tate et cristaux, Actes Congrès Intern. Math. 1970, I, 431–436.Google Scholar
  10. [10]
    L. ILLUSIE—Report on crystalline cohomology, Proc. of the AMS Summer Institute 1974, à paraître.Google Scholar
  11. [11]
    N. KATZ—On a theorem of Ax, Amer. J. Math., 93 (1971), 485–499.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. KATZ—Travaux de Dwork, Séminaire Bourbaki, exposé 409 (février 1972), Lecture Notes in Math. 383, Springer-Verlag, 1974.Google Scholar
  13. [13]
    N. KATZ and W. MESSING—Some Consequences of the Riemann Hypothesis for Varieties over Finite Fields, Inv. Math., 23 (1974), 73–77.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    N. KOBLITZ—p-adic variation of the zeta-function over families of varieties defined over finite fields, Thesis, Princeton, 1974.Google Scholar
  15. [15]
    I. MANIN—The theory of commutative formal groups over fields of finite characteristics, Russian Math. Surveys, 18 (1963).Google Scholar
  16. [16]
    B. MAZUR—Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., Vol. 78, no 5, 1972.Google Scholar
  17. [17]
    B. MAZUR—Frobenius and the Hodge filtration, estimates, Ann. of Maths., 98 (1973), 58–95.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    B. MAZUR—Eigenvalues of Frobenius acting on algebraic varieties over finite fields, Proc. of the AMS Summer Institute 1974, à paraître.Google Scholar
  19. [19]
    B. MAZUR and W. MESSING—Universal Extensions and One Dimensional Crystalline Cohomology, Lecture Notes in Math. 370, Springer Verlag, 1974.Google Scholar
  20. [20]
    W. MESSING—The Crystals associated to Barsotti-Tate Groups, Lecture Notes in Math. 264, Springer Verlag, 1972.Google Scholar
  21. [21]
    W. MESSING—The Universal Extension of an Abelian Variety by a Vector Group, Ist. Nazion. di Alta Mat., Sumposia Math., Vol. XI, 1973.Google Scholar
  22. [22]
    J. S. MILNE—preprint.Google Scholar
  23. [23]
    P. MONSKY—p-adic analysis and Zeta functions, 1969Google Scholar
  24. [24]
    P. MONSKY and G. WASHNITZER—Formal Cohomology I, Ann. of Maths., 88 (1968), 181–217.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. MUMFORD—Bi-extensions of formal groups, Algebraic Geometry, Bombay Colloquium 1968, p. 307–322, Oxford Univ. Press 1969.Google Scholar
  26. [26]
    N. ROBY—Les algèbres à puissances divisées, Bull. Soc. Math. France, 89 (1965), 75–91.zbMATHMathSciNetGoogle Scholar
  27. [27]
    J. TATE—On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, in Dix exposés, Advanced Studies in pure Math., North Holland, 1968.Google Scholar
  28. [28]
    E. WARNING—Bemerkung zur Vorstehenden Arbeit von Herr Chevalley, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 11 (1936), 76–83.Google Scholar

Copyright information

© N. Bourbaki 1976

Authors and Affiliations

  • Luc Illusie

There are no affiliations available

Personalised recommendations