Advertisement

Many-valued algorithmic logic

  • H. Rasiowa
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 499)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Banachowski, L. Modular approach to the logical theory of programs, Proc. Intern. Symp. Math. Found. Comp. Sci., Warsaw-Jadwisin, 1974, Springer.Google Scholar
  2. [2]
    Banachowski, L. An axiomatic approach to the theory of data structures, Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys. to appear.Google Scholar
  3. [3]
    Banachowski, L. Extended algorithmic logic and properties of programs, ibid. Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys. to appear.Google Scholar
  4. [4]
    Banachowski, L. Modular properties of programs, ibid. Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys. to appear.Google Scholar
  5. [5]
    Banachowski, L. Investigations of properties of programs by means of the extended algorithmic logic, Ph. D. Thesis, Faculty of Mathematics and Mechanics, University of Warsaw, 1975.Google Scholar
  6. [6]
    Blikle, A.; Mazurkiewicz, A. An algebraic approach to the theory of programs, algorithms, languages and recursiveness, Proc. Intern. Symp. and Summer School Math. Found. Comp. Sci., Warsaw-Jabłonna, 1972, CCPAS Reports, 1972.Google Scholar
  7. [7]
    Epstein, G. The lattice theory of Post algebras, Trans. Amer. Math. Soc., 95 (1960), 300–317.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Kreczmar, A. The set of all tautologies of algorithmic logic is hyperarithmetical, Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys., 21 (1971), 781–783.MathSciNetGoogle Scholar
  9. [9]
    Kreczmar, A. Degree of recursive unsolvability of algorithmic logic, ibid., 20 (1972), 615–617.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Kreczmar, A. Effectivity problems of algorithmic logic, Automata, Languages and Programming, Lec. Not. Comp. Sci., 14, Springer, 1974, 584–600.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Kreczmar, A. Effectivity problems of algorithmic logic (in Polish), Ph. D. Thesis, Faculty of Mathematics and Mechanics, University of Warsaw, 1973.Google Scholar
  12. [12]
    Maksimowa, L., Vakarelov, D. Representation theorems for generalized Post algebras of order ω+, Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys., 22 (1974), 757–764.Google Scholar
  13. [13]
    Maksimowa, L.; Vakarelov, D. Semantics for ω+-valued predicate calculi, ibid., 765–771.Google Scholar
  14. [14]
    Mirkowska, G. On formalized systems of algorithmic logic, ibid., 18 (1971), 421–428.MathSciNetGoogle Scholar
  15. [15]
    Mirkowska, G. Herbrand theorem in algorithmic logic, ibid., 22 (1974), 539–543.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Mirkowska, G. Algorithmic logic and its applications in program theory (in Polish), Ph. D. Thesis, Faculty of Mathematics and Mechanics, University of Warsaw, 1972.Google Scholar
  17. [17]
    Rasiowa, H. On generalized Post algebras of order ω+ and ω+-valued predicate calculi, Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys., 21 (1973), 209–219.zbMATHMathSciNetGoogle Scholar
  18. [18]
    Rasiowa, H. On logical structures of mixed-valued programs and ω+-valued algorithmic logic, ibid., 451–458.zbMATHMathSciNetGoogle Scholar
  19. [19]
    Rasiowa, H. Formalized ω+-valued algorithmic systems, ibid., 559–565.zbMATHMathSciNetGoogle Scholar
  20. [20]
    Rasiowa, H. A simplified formalization of ω+-valued algorithmic logic, ibid., 22 (1974), 595–603.zbMATHMathSciNetGoogle Scholar
  21. [21]
    Rasiowa, H. Extended ω+-valued algorithmic logic, ibid.. 605–610.Google Scholar
  22. [22]
    Rasiowa, H. ω +-valued algorithmic logic as a tool to investigate procedures, Proc. Intern. Symp. Math. Found. Comp. Sci., Warsaw-Jadwisin, 1974, Springer.Google Scholar
  23. [23]
    Rasiowa, H. Mixed-valued predicate calculi, Studia Logica, to appear.Google Scholar
  24. [24]
    Rasiowa, H. Post algebras as a semantic foundation of many-valued logic, MAA Studies in Mathematics, 1975.Google Scholar
  25. [25]
    Saloni, Z. A topological representation of generalized Post algebras of order ω+, Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys., to appear.Google Scholar
  26. [26]
    Salwicki, A. Formalized algorithmic languages, ibid., 18 (1970), 227–232.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Salwicki, A. On the equivalence of FS-expressions and programs, ibid., 275–278.zbMATHMathSciNetGoogle Scholar
  28. [28]
    Salwicki, A. On the predicate calculi with the iteration quantifiers, ibid., 279–285.zbMATHMathSciNetGoogle Scholar
  29. [29]
    Salwicki, A. Programability and recursiveness (an application of algorithmic logic to procedures), Dissertationes Mathematicae, to appear.Google Scholar
  30. [30]
    Scott, D. outline of a mathematical theory of computation, Oxford mon. PRG-2, Oxford University, 1970.Google Scholar
  31. [31]
    Speed, T. P. A note on Post algebras, Coll. Math., 24 (1971), 37–44.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Rasiowa
    • 1
  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations