Advertisement

On extendability of models of ZF set theory to the models of Kelley-Morse theory of classes

  • W. Marek
  • A. Mostowski
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 499)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Barwise: Infinitary methods in the model theory of set theory. In: Logic Colloquium 69, Editors R.O. Gandy and C.M.E. Yates, Amsterdam 1971, pp 53–66.Google Scholar
  2. [2]
    R. Chuaqui: Forcing for the impredicative theory of classes, Journal of Symb. Logic 37 (1972), pp 1–18.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Friedman: Countable models of set theories, in Springer Lecture Notes 337.Google Scholar
  4. [4]
    W. Guzicki: Ph.D. thesis, Warsaw, 1973Google Scholar
  5. [5]
    J.L. Krivine, K. McAloon: Some true unprovable formulas for set theory In: Proceedings of the Bertrand Russel memorial Logic conference, Leeds 1973, pp 332–41Google Scholar
  6. [6]
    W. Marek: On the metamathematics of impredicative set theory. Diss. Math. XCVII.Google Scholar
  7. [7]
    W. Marek, M. Srebrny: Gaps in constructible universe, Annals of Math. Logic 6 (1974), pp 359–394zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    W. Marek, M. Srebrny: There is no minimal transitive model of Z, to appear in Zeitschrift für Math. Logik.Google Scholar
  9. [9]
    W. Marek, P. Zbierski: On higher order set theories Bull. Acad. Pol. Sci. XXI (1973), pp 97–101MathSciNetGoogle Scholar
  10. [10]
    W. Marek, P. Zbierski: A lemma on quantifier with applications, to appearsGoogle Scholar
  11. [11]
    Y. Moschovakis: Predicative classes, in the Proceeding of Symposia AMS XIII 1. Editor D. Scott, Providence 1971, pp 247–264Google Scholar
  12. [12]
    A. Mostowski: Some impredicative definitions in set theory, Fundamenta Math. XXXIV (1947), ppGoogle Scholar
  13. [13]
    A. Mostowski: Models of ZF set theory satisfying..., Acta Phil. Fennica 18 (1965), pp. 135–144zbMATHMathSciNetGoogle Scholar
  14. [14]
    A. Mostowski: Constructible sets with applications, Amsterdam-Warszawa 1970.Google Scholar
  15. [15]
    A. Mostowski: Remarks on models of Gödel-Bernays set theory to appear in: Sets and Classes; Bernays memorial volume.Google Scholar
  16. [16]
    M. Nadel: Some Skolem-Löwenheim results for admissible sets. Israel Journal of Math. 12 (1972), pp 427–432.zbMATHMathSciNetGoogle Scholar
  17. [17]
    J. B. Paris: Minimal models of ZF. In: Proceedings of the Bertrand Russel memorial Logic conference, Leeds 1973, pp 327–331Google Scholar
  18. [18]
    G. Wilmers: An ℵ1—standard model of ZF set theory which is an element.... In Proceedings of the Bertrand Russel memorial Logic conference, Leeds 1973, pp 315–326Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • W. Marek
    • 1
  • A. Mostowski
    • 1
  1. 1.Warszawa

Personalised recommendations