On extendability of models of ZF set theory to the models of Kelley-Morse theory of classes

  • W. Marek
  • A. Mostowski
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 499)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Barwise: Infinitary methods in the model theory of set theory. In: Logic Colloquium 69, Editors R.O. Gandy and C.M.E. Yates, Amsterdam 1971, pp 53–66.Google Scholar
  2. [2]
    R. Chuaqui: Forcing for the impredicative theory of classes, Journal of Symb. Logic 37 (1972), pp 1–18.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Friedman: Countable models of set theories, in Springer Lecture Notes 337.Google Scholar
  4. [4]
    W. Guzicki: Ph.D. thesis, Warsaw, 1973Google Scholar
  5. [5]
    J.L. Krivine, K. McAloon: Some true unprovable formulas for set theory In: Proceedings of the Bertrand Russel memorial Logic conference, Leeds 1973, pp 332–41Google Scholar
  6. [6]
    W. Marek: On the metamathematics of impredicative set theory. Diss. Math. XCVII.Google Scholar
  7. [7]
    W. Marek, M. Srebrny: Gaps in constructible universe, Annals of Math. Logic 6 (1974), pp 359–394zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    W. Marek, M. Srebrny: There is no minimal transitive model of Z, to appear in Zeitschrift für Math. Logik.Google Scholar
  9. [9]
    W. Marek, P. Zbierski: On higher order set theories Bull. Acad. Pol. Sci. XXI (1973), pp 97–101MathSciNetGoogle Scholar
  10. [10]
    W. Marek, P. Zbierski: A lemma on quantifier with applications, to appearsGoogle Scholar
  11. [11]
    Y. Moschovakis: Predicative classes, in the Proceeding of Symposia AMS XIII 1. Editor D. Scott, Providence 1971, pp 247–264Google Scholar
  12. [12]
    A. Mostowski: Some impredicative definitions in set theory, Fundamenta Math. XXXIV (1947), ppGoogle Scholar
  13. [13]
    A. Mostowski: Models of ZF set theory satisfying..., Acta Phil. Fennica 18 (1965), pp. 135–144zbMATHMathSciNetGoogle Scholar
  14. [14]
    A. Mostowski: Constructible sets with applications, Amsterdam-Warszawa 1970.Google Scholar
  15. [15]
    A. Mostowski: Remarks on models of Gödel-Bernays set theory to appear in: Sets and Classes; Bernays memorial volume.Google Scholar
  16. [16]
    M. Nadel: Some Skolem-Löwenheim results for admissible sets. Israel Journal of Math. 12 (1972), pp 427–432.zbMATHMathSciNetGoogle Scholar
  17. [17]
    J. B. Paris: Minimal models of ZF. In: Proceedings of the Bertrand Russel memorial Logic conference, Leeds 1973, pp 327–331Google Scholar
  18. [18]
    G. Wilmers: An ℵ1—standard model of ZF set theory which is an element.... In Proceedings of the Bertrand Russel memorial Logic conference, Leeds 1973, pp 315–326Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • W. Marek
    • 1
  • A. Mostowski
    • 1
  1. 1.Warszawa

Personalised recommendations