Advertisement

Quantifier elimination

  • Peter Krauss
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 499)

Keywords

Inductive Procedure Amalgamation Property Quantifier Elimination Local Isomorphism Real Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, L., Ph.D. Thesis, Massachusetts Institute of Technology, 1968Google Scholar
  2. 2.
    Fraissé, R. Sur quelques classifications des relations, basées sur des isomorphismes restreints. I. Étude générale. II. Application aux relations d'ordres. Alger-Mathématiques 2 (1955), 16–60, 273–295Google Scholar
  3. 3.
    Keisler, H.J., Ultraproducts and saturated models, Indag. Math. 26 (1964), 178–186.MathSciNetGoogle Scholar
  4. 4.
    Kochen, S., Ultraproducts in the theory of models, Ann. of Math. 74 (1961), 221–261.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Mostowski, A., and Tarski, A., Arithmetical classes and types of well-ordered systems, Bull. Amer. Math. Soc. 55 (1949), 65.Google Scholar
  6. 6.
    Morley, M., and Vaught, R., Homogeneous universal models, Math. Scand. 11 (1962), 37–57.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Robinson, A., Complete Theories, Amsterdam, 1956, 129pp.Google Scholar
  8. 8.
    Sacks, G.E., Saturated Model Theory, Reading, Mass., 1972, xii+335pp.Google Scholar
  9. 9.
    Shoenfield, J.R., Mathematical Logic, Reading, Mass., 1967, vii+344pp.Google Scholar
  10. 10.
    Shoenfield, J.R., A theorem on quantifier elimination, Symposia Mathematica 5 (1970), 173–176.Google Scholar
  11. 11.
    Szmielew, W., Elementary properties of abelian groups, Fund. Math. 41 (1955), 203–271.zbMATHMathSciNetGoogle Scholar
  12. 12.
    Tarski, A., A Decision Method for Elementary Algebra and Geometry, Berkeley and Los Angeles, 1951, iii+63 pp.Google Scholar
  13. 13.
    Tarski, A., Arithmetical classes and types of Boolean algebras, Bull. Amer. Math. Soc. 55 (1949), 64.Google Scholar
  14. 14.
    Vaught, R., Denumerable models of complete theories, Infinitistic Methods, Wardzawa, 1961, 303–321.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Peter Krauss
    • 1
  1. 1.State University CollegeNew PaltzUSA

Personalised recommendations